Example #1
0
def best_edges(arr, threshold=0.025):
    import cv2
    from src.utils.preprocessing import sharpen
    blurred = cv2.bilateralFilter(arr.copy(), 30, 5, 5)
    cur_arr = blurred
    sigma = 0.0
    r = 1
    repeat = 0
    while r > threshold:
        print "sigma: " + str(sigma)
        ret = my_canny(cur_arr, sigma=sigma, save=False, show=False)
        s, r = decide_sigma(ret, ret.size, threshold=threshold, show=False)
        if s is False:
            sigma += 0.5
        else:
            if sigma == 0.0 and r < 0.01 and r > 0 and repeat < 3:
                repeat += 1
                sharpened = sharpen(blurred, sigma=2)
                cur_arr = sharpened
                r = 1
                continue
            break
    return ret, sigma, cur_arr
Example #2
0
cur_arr = cur_arr_3[:, :, 0]
from src.utils import preprocessing
import cv2
from src.utils.canny import decide_sigma

for sigma in [5]:
    for neighbor in [30]:
        blur = cv2.bilateralFilter(cur_arr.copy(), neighbor, sigma, sigma)
        showimage_pil(blur)
        cur_arr = blur
        sigma = 0.0
        r = 1
        threshold = 0.025
        while r > threshold:
            print "sigma: " + str(sigma)
            ret = my_canny(cur_arr, sigma=sigma, save=False, show=False)
            s, r = decide_sigma(ret, ret.size, threshold=threshold,show=True)
            if s is False:
                sigma += 0.5
            else:
                if sigma == 0.0 and r < 0.01:
                    sharpen = preprocessing.sharpen(blur, sigma=2)
                    cur_arr= sharpen
                    showimage_pil(sharpen)
                    r = 1

                    continue
                break

showimage_pil(ret)
Example #3
0
"""
###############################
set input/output path
###############################
"""
from src.utils import features
from src.utils import preprocessing

lns = ["L3"]
test_n = 1
for ln in lns:
    input_dir = xray_dir + "/data/train/" + str(ln)
    for dirName, subdirList, fileList in os.walk(input_dir):
        for filename in fileList:
            parts = filename.split(".")
            if parts[0] == "":
                continue
            if parts[1] == "jpg" and test_n == 1:
                test_n += 1
                img = Image.open(dirName + "/" + filename)
                arr_3 = np.array(img.getdata(), dtype=np.uint8).reshape(img.size[1], img.size[0], 3)
                arr = arr_3[:, :, 0]
                arr = preprocessing.normalize(arr)
                arr = preprocessing.sharpen(arr)
                # if DEBUG is True:
                #      showimage_pil(arr)
                features.Harris_Corner(
                    arr, show=True, save=True, fn="/Users/ruhansa/Desktop/result/xray/feature_test/harris_corner.jpg"
                )