Example #1
0
def test(dataloader, loss_criterian, model):

	"""
	Function to test
	:param dataloader: Pytorch dataloader
	:param loss_criterian: Loss function with OHNM using MSE Loss
	:param model: Pytorch model of UNet-ResNet
	:return: all iteration loss values
	"""

	with torch.no_grad():  # For no gradient calculation

		model.eval()
		iterator = tqdm(dataloader)
		all_loss = []
		all_accuracy = []

		for no, (image, weight, weight_affinity) in enumerate(iterator):

			if config.use_cuda:
				image, weight, weight_affinity = image.cuda(), weight.cuda(), weight_affinity.cuda()

			output = model(image)
			loss = loss_criterian(output, weight, weight_affinity).mean()

			all_loss.append(loss.item())

			if type(output) == list:
				output = torch.cat(output, dim=0)

			predicted_bbox = generate_word_bbox_batch(
				output[:, 0, :, :].data.cpu().numpy(),
				output[:, 1, :, :].data.cpu().numpy(),
				character_threshold=config.threshold_character,
				affinity_threshold=config.threshold_affinity)

			target_bbox = generate_word_bbox_batch(
				weight.data.cpu().numpy(),
				weight_affinity.data.cpu().numpy(),
				character_threshold=config.threshold_character,
				affinity_threshold=config.threshold_affinity)

			all_accuracy.append(calculate_batch_fscore(predicted_bbox, target_bbox, threshold=config.threshold_fscore))

			iterator.set_description(
				'Loss:' + str(int(loss.item() * 100000000) / 100000000) + ' Iterations:[' + str(no) + '/' + str(
					len(iterator)) +
				'] Average Loss:' + str(int(np.array(all_loss)[-min(1000, len(all_loss)):].mean()*100000000)/100000000) +
				'| Average F-Score: ' + str(int(np.array(all_accuracy)[-min(1000, len(all_accuracy)):].mean()*100000000)/100000000)
			)

			if no % config.periodic_output == 0 and no != 0:
				if type(output) == list:
					output = torch.cat(output, dim=0)
				save(image, output, weight, weight_affinity, no)

		return all_loss
Example #2
0
def train(dataloader, loss_criterian, model, optimizer, starting_no, all_loss, all_accuracy):

	"""
	Function to test
	:param dataloader: Pytorch dataloader
	:param loss_criterian: Loss function with OHNM using MSE Loss
	:param model: Pytorch model of UNet-ResNet
	:param optimizer: Adam Optimizer
	:param starting_no: how many items to skip in the dataloader
	:param all_loss: list of all loss values
	:param all_accuracy: list of all f-scores
	:return: all iteration loss values
	"""

	model.train()
	optimizer.zero_grad()
	iterator = tqdm(dataloader)

	def change_lr(no_i):

		for i in config.lr:
			if i == no_i:
				print('Learning Rate Changed to ', config.lr[i])
				for param_group in optimizer.param_groups:
					param_group['lr'] = config.lr[i]

	for no, (image, weight, weight_affinity) in enumerate(iterator):

		change_lr(no)

		if config.pretrained:
			if no == starting_no:
				dataloader.start = True
				continue
			elif no < starting_no:
				continue

		if config.use_cuda:
			image, weight, weight_affinity = image.cuda(), weight.cuda(), weight_affinity.cuda()

		output = model(image)
		loss = loss_criterian(output, weight, weight_affinity).mean()/4

		all_loss.append(loss.item()*config.optimizer_iteration)

		loss.backward()

		if (no + 1) % config.optimizer_iteration == 0:
			optimizer.step()
			optimizer.zero_grad()

		if no >= 0:

			# Calculating the f-score after some iterations because initially there are a lot of stray contours

			if no % config.periodic_fscore == 0:

				if type(output) == list:
					output = torch.cat(output, dim=0)

				predicted_bbox = generate_word_bbox_batch(
					output[:, 0, :, :].data.cpu().numpy(),
					output[:, 1, :, :].data.cpu().numpy(),
					character_threshold=config.threshold_character,
					affinity_threshold=config.threshold_affinity,
					word_threshold=config.threshold_word,
				)

				target_bbox = generate_word_bbox_batch(
					weight.data.cpu().numpy(),
					weight_affinity.data.cpu().numpy(),
					character_threshold=config.threshold_character,
					affinity_threshold=config.threshold_affinity,
					word_threshold=config.threshold_word,
				)

				all_accuracy.append(
					calculate_batch_fscore(
						predicted_bbox, target_bbox, threshold=config.threshold_fscore, text_target=None
					)
				)

		if len(all_accuracy) == 0:
			iterator.set_description(
				'Loss:' + str(
					int(loss.item() * config.optimizer_iteration * 100000000) / 100000000) +
				' Iterations:[' + str(no) + '/' + str(
					len(iterator)) +
				'] Average Loss:' + str(int(np.array(all_loss)[-min(1000, len(all_loss)):].mean() * 100000000) / 100000000))

		else:

			iterator.set_description(
				'Loss:' + str(int(loss.item() * config.optimizer_iteration * 100000000) / 100000000) + ' Iterations:[' +
				str(no) + '/' + str(len(iterator)) +
				'] Average Loss:' + str(int(np.array(all_loss)[-min(1000, len(all_loss)):].mean()*100000000)/100000000) +
				'| Average F-Score: ' + str(int(np.array(all_accuracy)[-min(1000, len(all_accuracy)):].mean()*100000000)/100000000)
			)

		if no % config.periodic_output == 0:

			if type(output) == list:
				output = torch.cat(output, dim=0)

			save(image, output, weight, weight_affinity, no)

		if no % config.periodic_save == 0:

			torch.save(
				{
					'state_dict': model.state_dict(),
					'optimizer': optimizer.state_dict()
				}, config.save_path + '/' + str(no) + '_model.pkl')

			np.save(config.save_path + '/loss_plot_training.npy', all_loss)
			plt.plot(all_loss)
			plt.savefig(config.save_path + '/loss_plot_training.png')
			plt.clf()

	return all_loss
Example #3
0
def train(model, optimizer, iteration):

	"""
	Train the weak-supervised model iteratively
	:param model: Pre-trained model on SynthText
	:param optimizer: Pre-trained model's optimizer
	:param iteration: current iteration of weak-supervision
	:return: model, optimizer
	"""

	optimizer = change_lr(optimizer, config.lr[iteration])

	dataloader = DataLoader(
		DataLoaderMIX('train', iteration),
		batch_size=config.batch_size['train'],
		num_workers=config.num_workers['train'],
		shuffle=True, worker_init_fn=_init_fn,
	)

	loss_criterian = DataParallelCriterion(Criterian())

	model.train()
	optimizer.zero_grad()
	iterator = tqdm(dataloader)

	all_loss = []
	all_precision = []
	all_f_score = []
	all_recall = []
	all_count = []

	for no, (
			image,
			character_map,
			affinity_map,
			character_weight,
			affinity_weight,
			dataset_name,
			text_target,
			item,
			original_dim) in enumerate(iterator):

		if config.use_cuda:
			image, character_map, affinity_map = image.cuda(), character_map.cuda(), affinity_map.cuda()
			character_weight, affinity_weight = character_weight.cuda(), affinity_weight.cuda()

		if (no + 1) % config.change_lr == 0:
			optimizer = change_lr(optimizer, config.lr[iteration]*(0.8**((no + 1)//config.change_lr - 1)))

		output = model(image)
		loss = loss_criterian(
			output,
			character_map,
			affinity_map,
			character_weight,
			affinity_weight
		).mean()/config.optimizer_iterations

		all_loss.append(loss.item()*config.optimizer_iterations)

		loss.backward()

		if (no + 1) % config.optimizer_iterations == 0:
			optimizer.step()
			optimizer.zero_grad()

		# ---------- Calculating the F-score ------------ #

		if (no + 1) % config.check_iterations == 0:

			if type(output) == list:
				output = torch.cat(output, dim=0)

			output[output < 0] = 0
			output[output > 1] = 1

			save(no, dataset_name, output, image, character_map, affinity_map, character_weight, affinity_weight)

		if (no + 1) % config.calc_f_score == 0:

			if type(output) == list:
				output = torch.cat(output, dim=0)

			target_ic13 = []
			predicted_ic13 = []
			target_text = []
			current_count = 0

			output = output.data.cpu().numpy()

			output[output > 1] = 1
			output[output < 0] = 0

			original_dim = original_dim.numpy()

			for __, _ in enumerate(dataset_name):

				if _ != 'SYNTH':

					predicted_ic13.append(resize_bbox(original_dim[__], output[__], config)['word_bbox'])
					target_ic13.append(np.array(dataloader.dataset.gt[item[__]][1]['word_bbox'].copy(), dtype=np.int32))
					target_text.append(text_target[__].split('#@#@#@'))

					current_count += 1

			if len(predicted_ic13) != 0:

				f_score, precision, recall = calculate_batch_fscore(
						predicted_ic13,
						target_ic13,
						text_target=target_text,
						threshold=config.threshold_fscore)

				all_f_score.append(f_score*current_count)
				all_precision.append(precision*current_count)
				all_recall.append(recall*current_count)

				all_count.append(current_count)

		# ------------- Setting Description ---------------- #

		if np.array(all_count)[-min(100, len(all_count)):].sum() != 0:

			count = np.array(all_count)[-min(100, len(all_count)):].sum()

			f_score = int(np.array(all_f_score)[-min(100, len(all_f_score)):].sum() * 10000 / count) / 10000
			precision = int(np.array(all_precision)[-min(100, len(all_precision)):].sum() * 10000 / count) / 10000
			recall = int(np.array(all_recall)[-min(100, len(all_recall)):].sum() * 10000 / count) / 10000
		else:

			f_score = 0
			precision = 0
			recall = 0
#

		iterator.set_description(
			'Loss:' + str(int(loss.item() * config.optimizer_iterations * 100000) / 100000) + ' Iterations:[' + str(no)
			+ '/' + str(len(iterator)) +
			'] Average Loss:' + str(
				int(np.array(all_loss)[-min(1000, len(all_loss)):].mean() * 100000) / 100000) +
			'| Average F-Score: ' + str(f_score) +
			'| Average Recall: ' + str(recall) +
			'| Average Precision: ' + str(precision)
		)

		if (no + 1) % config.test_now == 0:

			del image, loss, affinity_weight, character_weight, affinity_map, character_map, output
			print('\nF-score of testing: ', test(model, iteration), '\n')
			model.train()

	if len(iterator) % config.optimizer_iterations != 0:

		optimizer.step()
		optimizer.zero_grad()

	torch.cuda.empty_cache()

	return model, optimizer, all_loss, all_f_score
Example #4
0
def train(model, optimizer, iteration):
    """
	Train the weak-supervised model iteratively
	:param model: Pre-trained model on SynthText
	:param optimizer: Pre-trained model's optimizer
	:param iteration: current iteration of weak-supervision
	:return: model, optimizer
	"""
    def change_lr():

        # Change learning rate while training
        for param_group in optimizer.param_groups:
            param_group['lr'] = config.lr[iteration]

        print('Learning Rate Changed to ', config.lr[iteration])

    change_lr()

    dataloader = DataLoader(DataLoaderMIX('train', iteration),
                            batch_size=config.batch_size['train'],
                            num_workers=0,
                            shuffle=True)
    loss_criterian = DataParallelCriterion(Criterian())

    model.train()
    optimizer.zero_grad()
    iterator = tqdm(dataloader)

    all_loss = []
    all_accuracy = []
    all_count = []

    for no, (image, character_map, affinity_map, character_weight,
             affinity_weight, dataset_name, text_target, item,
             original_dim) in enumerate(iterator):

        if config.use_cuda:
            image, character_map, affinity_map = image.cuda(
            ), character_map.cuda(), affinity_map.cuda()
            character_weight, affinity_weight = character_weight.cuda(
            ), affinity_weight.cuda()

        output = model(image)
        loss = loss_criterian(
            output, character_map, affinity_map, character_weight,
            affinity_weight).mean() / config.optimizer_iterations

        all_loss.append(loss.item() * config.optimizer_iterations)

        loss.backward()

        if (no + 1) % config.optimizer_iterations == 0:
            optimizer.step()
            optimizer.zero_grad()

        # ---------- Calculating the F-score ------------ #

        if type(output) == list:
            output = torch.cat(output, dim=0)

        output[output < 0] = 0
        output[output > 1] = 1

        target_ic13 = []
        predicted_ic13 = []
        target_text = []
        current_count = 0

        if no % config.check_iterations == 0:

            save(no, dataset_name, output, image, character_map, affinity_map,
                 character_weight, affinity_weight)

        output = output.data.cpu().numpy()
        original_dim = original_dim.numpy()

        for __, _ in enumerate(dataset_name):

            if _ != 'SYNTH':

                predicted_ic13.append(
                    resize_bbox(original_dim[__], output[__],
                                config)['word_bbox'])
                target_ic13.append(
                    np.array(
                        dataloader.dataset.gt[item[__]][1]['word_bbox'].copy(),
                        dtype=np.int32))
                target_text.append(text_target[__].split('~'))

                current_count += 1

        if len(predicted_ic13) != 0:

            all_accuracy.append(
                calculate_batch_fscore(predicted_ic13,
                                       target_ic13,
                                       text_target=target_text,
                                       threshold=config.threshold_fscore) *
                current_count)

            all_count.append(current_count)

        # ------------- Setting Description ---------------- #

        if np.array(all_count)[-min(1000, len(all_count)):].sum() != 0:

            f_score = int(
                np.array(all_accuracy)[-min(1000, len(all_accuracy)):].sum() *
                100000000 / np.array(
                    all_count)[-min(1000, len(all_count)):].sum()) / 100000000
        else:
            f_score = 0

        iterator.set_description(
            'Loss:' + str(
                int(loss.item() * config.optimizer_iterations * 100000) /
                100000) + ' Iterations:[' + str(no) + '/' +
            str(len(iterator)) + '] Average Loss:' + str(
                int(
                    np.array(all_loss)[-min(1000, len(all_loss)):].mean() *
                    100000) / 100000) + '| Average F-Score: ' + str(f_score))

    if len(iterator) % config.optimizer_iterations != 0:

        optimizer.step()
        optimizer.zero_grad()

    torch.cuda.empty_cache()

    return model, optimizer, all_loss, all_accuracy
Example #5
0
def train(model, optimizer, iteration):
    """
	Train the weak-supervised model iteratively
	:param model: Pre-trained model on SynthText
	:param optimizer: Pre-trained model's optimizer
	:param iteration: current iteration of weak-supervision
	:return: model, optimizer
	"""

    dataloader = DataLoader(DataLoaderMIX('train', iteration),
                            batch_size=config.batch_size['train'],
                            num_workers=8)
    loss_criterian = DataParallelCriterion(Criterian())

    model.train()
    optimizer.zero_grad()
    iterator = tqdm(dataloader)
    """
	Currently not changing the learning rate while weak supervision
	
	def change_lr(no):

		# Change learning rate while training

		for i in config.lr:
			if i == no:
				print('Learning Rate Changed to ', config.lr[i])
				for param_group in optimizer.param_groups:
					param_group['lr'] = config.lr[i]

	change_lr(1)
	"""

    all_loss = []
    all_accuracy = []

    for no, (image, character_map, affinity_map, character_weight,
             affinity_weight) in enumerate(iterator):

        if config.use_cuda:
            image, character_map, affinity_map = image.cuda(
            ), character_map.cuda(), affinity_map.cuda()
            character_weight, affinity_weight = character_weight.cuda(
            ), affinity_weight.cuda()

        output = model(image)
        loss = loss_criterian(output, character_map, affinity_map,
                              character_weight, affinity_weight).mean()

        all_loss.append(loss.item())

        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if len(all_accuracy) == 0:
            iterator.set_description(
                'Loss:' + str(int(loss.item() * 100000000) / 100000000) +
                ' Iterations:[' + str(no) + '/' + str(len(iterator)) +
                '] Average Loss:' + str(
                    int(
                        np.array(all_loss)[-min(1000, len(all_loss)):].mean() *
                        100000000) / 100000000))

        else:

            iterator.set_description(
                'Loss:' + str(int(loss.item() * 100000000) / 100000000) +
                ' Iterations:[' + str(no) + '/' + str(len(iterator)) +
                '] Average Loss:' + str(
                    int(
                        np.array(all_loss)[-min(1000, len(all_loss)):].mean() *
                        100000000) / 100000000) + '| Average F-Score: ' +
                str(
                    int(
                        np.array(all_accuracy)[-min(1000, len(all_accuracy)):].
                        mean() * 100000000) / 100000000))

        # ---------- Calculating the F-score ------------ #

        if type(output) == list:
            output = torch.cat(output, dim=0)

        predicted_bbox = generate_word_bbox_batch(
            output[:, 0, :, :].data.cpu().numpy(),
            output[:, 1, :, :].data.cpu().numpy(),
            character_threshold=config.threshold_character,
            affinity_threshold=config.threshold_affinity)

        target_bbox = generate_word_bbox_batch(
            character_map.data.cpu().numpy(),
            affinity_map.data.cpu().numpy(),
            character_threshold=config.threshold_character,
            affinity_threshold=config.threshold_affinity)

        all_accuracy.append(
            calculate_batch_fscore(predicted_bbox,
                                   target_bbox,
                                   threshold=config.threshold_fscore))

    torch.cuda.empty_cache()

    return model, optimizer
Example #6
0
def train(model, optimizer, iteration):

	"""
	Train the weak-supervised model iteratively
	:param model: Pre-trained model on SynthText
	:param optimizer: Pre-trained model's optimizer
	:param iteration: current iteration of weak-supervision
	:return: model, optimizer
	"""

	def change_lr():

		# Change learning rate while training
		for param_group in optimizer.param_groups:
			param_group['lr'] = config.lr[iteration]

		print('Learning Rate Changed to ', config.lr[iteration])

	change_lr()

	dataloader = DataLoader(
		DataLoaderMIX('train', iteration), batch_size=config.batch_size['train'], num_workers=8, shuffle=True)
	loss_criterian = DataParallelCriterion(Criterian())

	model.train()
	optimizer.zero_grad()
	iterator = tqdm(dataloader)

	all_loss = []
	all_accuracy = []
	all_count = []

	ground_truth = iterator.iterable.dataset.gt

	for no, (image, character_map, affinity_map, character_weight, affinity_weight, word_bbox, original_dim) in \
		enumerate(iterator):

		if config.use_cuda:
			image, character_map, affinity_map = image.cuda(), character_map.cuda(), affinity_map.cuda()
			character_weight, affinity_weight = character_weight.cuda(), affinity_weight.cuda()

		output = model(image)
		loss = loss_criterian(output, character_map, affinity_map, character_weight, affinity_weight).mean()/4

		all_loss.append(loss.item()*4)

		loss.backward()

		if (no + 1) % 4 == 0:
			optimizer.step()
			optimizer.zero_grad()

		# ---------- Calculating the F-score ------------ #

		if type(output) == list:
			output = torch.cat(output, dim=0)

		output = output.data.cpu().numpy()
		# image = image.data.cpu().numpy()
		original_dim = original_dim.cpu().numpy()

		target_bbox = []
		predicted_ic13 = []
		current_count = 0

		word_bbox = word_bbox.numpy()

		for __, _ in enumerate(word_bbox):

			if _[1] == 1:

				# ToDo - Understand why model.train() gives poor results but model.eval() with torch.no_grad() gives better results

				max_dim = original_dim[__].max()
				resizing_factor = 768 / max_dim
				before_pad_dim = [int(original_dim[__][0] * resizing_factor), int(original_dim[__][1] * resizing_factor)]

				output[__, :, :, :] = np.uint8(output[__, :, :, :] * 255)

				height_pad = (768 - before_pad_dim[0]) // 2
				width_pad = (768 - before_pad_dim[1]) // 2

				character_bbox = cv2.resize(
					output[__, 0, height_pad:height_pad + before_pad_dim[0], width_pad:width_pad + before_pad_dim[1]],
					(original_dim[__][1], original_dim[__][0])) / 255

				affinity_bbox = cv2.resize(
					output[__, 1, height_pad:height_pad + before_pad_dim[0], width_pad:width_pad + before_pad_dim[1]],
					(original_dim[__][1], original_dim[__][0])) / 255

				predicted_bbox = generate_word_bbox(
					character_bbox,
					affinity_bbox,
					character_threshold=config.threshold_character,
					affinity_threshold=config.threshold_affinity,
					word_threshold=config.threshold_word)['word_bbox']

				predicted_ic13.append(predicted_bbox)
				target_bbox.append(np.array(ground_truth[_[0] % len(ground_truth)][1]['word_bbox'], dtype=np.int64))

				current_count += 1

		all_accuracy.append(
			calculate_batch_fscore(
				predicted_ic13,
				target_bbox,
				threshold=config.threshold_fscore)*current_count
		)

		all_count.append(current_count)

		# ------------- Setting Description ---------------- #

		if np.array(all_count)[-min(1000, len(all_count)):].sum() != 0:
			f_score = int(
						np.array(all_accuracy)[-min(1000, len(all_accuracy)):].sum() * 100000000 /
						np.array(all_count)[-min(1000, len(all_count)):].sum()) / 100000000
		else:
			f_score = 0

		iterator.set_description(
			'Loss:' + str(int(loss.item() * 4 * 100000) / 100000) + ' Iterations:[' + str(no) + '/' + str(
				len(iterator)) +
			'] Average Loss:' + str(
				int(np.array(all_loss)[-min(1000, len(all_loss)):].mean() * 100000) / 100000) +
			'| Average F-Score: ' + str(f_score)
		)

	if len(iterator) % 4 != 0:

		optimizer.step()
		optimizer.zero_grad()

	torch.cuda.empty_cache()

	return model, optimizer, all_loss, all_accuracy