Example #1
0
def prepare_darpa_csv(subject, bipolar, atlas, good_channels=None, groups_ordering=None, error_radius=3, elec_length=4, p_threshold=0.05):
    elecs_names, elecs_coords = elec_pre.read_electrodes_file(subject, bipolar)
    elecs_coords_mni = fu.transform_subject_to_mni_coordinates(subject, elecs_coords, SUBJECTS_DIR)
    elec_pre.save_electrodes_coords(elecs_names, elecs_coords_mni, good_channels)
    elecs_coords_mni_dic = {elec_name:elec_coord for (elec_name,elec_coord) in zip(elecs_names, elecs_coords_mni)}
    elecs_probs, _ = utils.get_electrodes_labeling(subject, BLENDER_ROOT_DIR, atlas, bipolar, error_radius, elec_length)
    assert(len(elecs_names) == len(elecs_coords_mni) == len(elecs_probs))
    most_probable_rois = elec_pre.get_most_probable_rois(elecs_probs, p_threshold, good_channels)
    rois_colors = elec_pre.get_rois_colors(most_probable_rois)
    elec_pre.save_rois_colors_legend(subject, rois_colors, bipolar)
    utils.make_dir(op.join(BLENDER_ROOT_DIR, 'colin27', 'coloring'))
    results = defaultdict(list)
    for elec_name, elec_probs in zip(elecs_names, elecs_probs):
        assert(elec_name == elec_probs['name'])
        if not good_channels is None and elec_name not in good_channels:
            continue
        group = get_elec_group(elec_name, bipolar)
        roi = elec_pre.get_most_probable_roi([*elec_probs['cortical_probs'], *elec_probs['subcortical_probs']],
            [*elec_probs['cortical_rois'], *elec_probs['subcortical_rois']], p_threshold)
        color = rois_colors[utils.get_hemi_indifferent_roi(roi)]
        results[group].append(dict(name=elec_name, roi=roi, color=color))
    coloring_fname = 'electrodes{}_coloring.csv'.format('_bipolar' if bipolar else '')
    with open(op.join(OUTPUT_DIR, '{}_electrodes_info.csv'.format(subject)), 'w') as csv_file, \
        open(op.join(BLENDER_ROOT_DIR, 'colin27', 'coloring', coloring_fname), 'w') as colors_csv_file:
        csv_writer = csv.writer(csv_file, delimiter=',')
        colors_csv_writer = csv.writer(colors_csv_file, delimiter=',')
        elec_ind = 0
        for group in groups_ordering:
            group_res = sorted(results[group], key=lambda x:natural_keys(x['name']))
            for res in group_res:
                csv_writer.writerow([elec_ind, res['name'], *elecs_coords_mni_dic[res['name']], res['roi'], *res['color']])
                colors_csv_writer.writerow([res['name'], *res['color']])
                elec_ind += 1
Example #2
0
def prepare_darpa_csv(subject,
                      bipolar,
                      atlas,
                      good_channels=None,
                      groups_ordering=None,
                      error_radius=3,
                      elec_length=4,
                      p_threshold=0.05):
    elecs_names, elecs_coords = elec_pre.read_electrodes_file(subject, bipolar)
    elecs_coords_mni = fu.transform_subject_to_mni_coordinates(
        subject, elecs_coords, SUBJECTS_DIR)
    elec_pre.save_electrodes_coords(elecs_names, elecs_coords_mni,
                                    good_channels)
    elecs_coords_mni_dic = {
        elec_name: elec_coord
        for (elec_name, elec_coord) in zip(elecs_names, elecs_coords_mni)
    }
    elecs_probs, _ = utils.get_electrodes_labeling(subject, BLENDER_ROOT_DIR,
                                                   atlas, bipolar,
                                                   error_radius, elec_length)
    assert (len(elecs_names) == len(elecs_coords_mni) == len(elecs_probs))
    most_probable_rois = elec_pre.get_most_probable_rois(
        elecs_probs, p_threshold, good_channels)
    rois_colors = elec_pre.get_rois_colors(most_probable_rois)
    elec_pre.save_rois_colors_legend(subject, rois_colors, bipolar)
    utils.make_dir(op.join(BLENDER_ROOT_DIR, 'colin27', 'coloring'))
    results = defaultdict(list)
    for elec_name, elec_probs in zip(elecs_names, elecs_probs):
        assert (elec_name == elec_probs['name'])
        if not good_channels is None and elec_name not in good_channels:
            continue
        group = get_elec_group(elec_name, bipolar)
        roi = elec_pre.get_most_probable_roi(
            [*elec_probs['cortical_probs'], *elec_probs['subcortical_probs']],
            [*elec_probs['cortical_rois'], *elec_probs['subcortical_rois']],
            p_threshold)
        color = rois_colors[utils.get_hemi_indifferent_roi(roi)]
        results[group].append(dict(name=elec_name, roi=roi, color=color))
    coloring_fname = 'electrodes{}_coloring.csv'.format(
        '_bipolar' if bipolar else '')
    with open(op.join(OUTPUT_DIR, '{}_electrodes_info.csv'.format(subject)), 'w') as csv_file, \
        open(op.join(BLENDER_ROOT_DIR, 'colin27', 'coloring', coloring_fname), 'w') as colors_csv_file:
        csv_writer = csv.writer(csv_file, delimiter=',')
        colors_csv_writer = csv.writer(colors_csv_file, delimiter=',')
        elec_ind = 0
        for group in groups_ordering:
            group_res = sorted(results[group],
                               key=lambda x: natural_keys(x['name']))
            for res in group_res:
                csv_writer.writerow([
                    elec_ind, res['name'], *elecs_coords_mni_dic[res['name']],
                    res['roi'], *res['color']
                ])
                colors_csv_writer.writerow([res['name'], *res['color']])
                elec_ind += 1
Example #3
0
def create_electrodes_labeling_coloring(subject, bipolar, atlas, good_channels=None, error_radius=3, elec_length=4,
        p_threshold=0.05, legend_name='', coloring_fname=''):
    elecs_names, elecs_coords = read_electrodes_file(subject, bipolar)
    elecs_probs, electrode_labeling_fname = utils.get_electrodes_labeling(
        subject, MMVT_DIR, atlas, bipolar, error_radius, elec_length)
    if elecs_probs is None:
        print('No electrodes labeling file!')
        return
    if electrode_labeling_fname != op.join(MMVT_DIR, subject, 'electrodes',
            op.basename(electrode_labeling_fname)):
        shutil.copy(electrode_labeling_fname, op.join(MMVT_DIR, subject, 'electrodes',
            op.basename(electrode_labeling_fname)))
    most_probable_rois = get_most_probable_rois(elecs_probs, p_threshold, good_channels)
    rois_colors_rgbs, rois_colors_names = get_rois_colors(subject, atlas, most_probable_rois)
    save_rois_colors_legend(subject, rois_colors_rgbs, bipolar, legend_name)
    utils.make_dir(op.join(MMVT_DIR, subject, 'coloring'))
    if coloring_fname == '':
        coloring_fname = 'electrodes{}_coloring.csv'.format('_bipolar' if bipolar else '')
    coloring_fol = op.join(MMVT_DIR, subject, 'coloring')
    coloring_fname =  op.join(coloring_fol, coloring_fname)
    colors_names_fname = op.join(coloring_fol, 'electrodes{}_colors_names.txt'.format('_bipolar' if bipolar else ''))
    elec_names_rois_colors = defaultdict(list)
    with open(coloring_fname, 'w') as colors_rgbs_file, open(colors_names_fname, 'w') as colors_names_file:
        # colors_csv_writer = csv.writer(colors_csv_file, delimiter=',')
        for elec_name, elec_probs in zip(elecs_names, elecs_probs):
            assert(elec_name == elec_probs['name'])
            if not good_channels is None and elec_name not in good_channels:
                continue
            roi = get_most_probable_roi([*elec_probs['cortical_probs'], *elec_probs['subcortical_probs']],
                [*elec_probs['cortical_rois'], *elec_probs['subcortical_rois']], p_threshold)
            if roi != '':
                inv_roi = utils.get_hemi_indifferent_roi(roi)
                colors_rgbs_file.write('{},{},{},{}\n'.format(elec_name, *rois_colors_rgbs[inv_roi]))
                colors_names_file.write('{},{},{}\n'.format(elec_name, inv_roi, rois_colors_names[inv_roi]))
                elec_names_rois_colors[inv_roi].append(elec_name)
                # colors_csv_writer.writerow([elec_name, *color_rgb])
    with open(op.join(coloring_fol, 'electrodes_report.txt'), 'w') as elecs_report_file:
        for inv_roi, electrodes_names in elec_names_rois_colors.items():
            elecs_report_file.write('{},{},{}\n'.format(inv_roi, rois_colors_names[inv_roi], ','.join(electrodes_names)))