Example #1
0
File: SFS.py Project: braisCB/SFS
def get_saliency_for_classification(data,
                                    label,
                                    saliency_function,
                                    batch_size=50,
                                    balance_data=False,
                                    class_func='sum',
                                    reduce_func='sum',
                                    generator=None,
                                    generator_kwargs=None,
                                    generator_epochs=50,
                                    horizontal_flip=False):
    label_ids = np.unique(label) if label.ndim == 1 else list(
        range(label.shape[-1]))
    saliency_function = []
    if isinstance(class_func, str):
        class_func = getattr(np, class_func)
    data_, label_ = utils.balance_data(data,
                                       label) if balance_data else data, label
    for label_id in label_ids:
        index = np.where(
            label_ == label_id)[0] if label_.ndim == 1 else np.where(
                label_[:, label_id] == 1)[0]
        label_saliency = get_saliency_func(data_[index], label_[index],
                                           saliency_function, batch_size,
                                           reduce_func, generator,
                                           generator_kwargs, generator_epochs)
        if horizontal_flip and len(data_.shape) > 2:
            label_saliency += get_saliency_func(data_[index][..., ::-1, :],
                                                label_[index],
                                                saliency_function, batch_size,
                                                reduce_func)
        label_saliency /= np.maximum(1e-6, np.sum(np.abs(label_saliency)))
        saliency_function.append(label_saliency)
    saliency = class_func(saliency_function, axis=0)
    # factor = np.sign(np.max(saliency_function, axis=0))
    # print('bad values :', (factor < 0).sum())
    saliency /= np.maximum(1e-6, np.abs(saliency).sum())
    del data_, label_, saliency_function
    return saliency
Example #2
0
        dataset_name, max_features = dataset_stats
        print('loading dataset', dataset_name)
        dataset = load_dataset(dataset_name,
                               directory=datasets_directory,
                               normalize=dataset_name
                               not in ['dexter', 'dorothea'])
        print('data loaded. labels =', dataset['train']['data'].shape)
        batch_size = min(len(dataset['train']['data']), b_size)
        input_shape = dataset['train']['data'].shape[-1:]

        nclasses = len(np.unique(dataset['train']['label']))

        data = dataset['train']['data']
        label = dataset['train']['label']

        data, label = balance_data(data, label)

        valid_data = dataset['validation']['data']
        valid_label = dataset['validation']['label']

        label = kutils.to_categorical(label, 2)
        valid_label = kutils.to_categorical(valid_label, 2)

        total_features = data.shape[-1]

        fs_filename = root_directory + dataset_name + '_gamma_' + str(
            gamma) + '_ranks.json'
        output_filename = root_directory + dataset_name + '_gamma_' + str(
            gamma) + '_results.json'
        try:
            with open(fs_filename) as outfile: