def __init__(self): self.sample_options = ( # Do nothing None, # min IoU, max IoU (0.1, None), (0.3, None), (0.5, None), (0.7, None), (0.9, None), # no IoU requirements (None, None), ) self.dboxes = dboxes640_coco()
def __init__(self, backbone=None, num_classes=21): super(RetinaNet640, self).__init__() if backbone is None: raise Exception("backbone is None") if not hasattr(backbone, "out_channels"): raise Exception("the backbone not has attribute: out_channel") self.feature_extractor = backbone self.num_classes = num_classes # out_channels = [1024, 512, 512, 256, 256, 256] for resnet50 self.predictor = Predictor(num_features=5, in_channels=256, num_layers_before_predictor=4, num_classes=num_classes, num_boxes=6) default_box = dboxes640_coco() self.compute_loss = Loss(default_box) self.encoder = Encoder(default_box) self.postprocess = PostProcess(default_box)
def __init__(self): self.default_box = dboxes640_coco() self.encoder = Encoder(self.default_box)