# - Estimation " " with respect to the BBox - ignoring them from the calculation # Set useful directories frames_dir = os.path.join(w.ROOT_DIR, 'frames') results_dir = os.path.join(w.OUTPUT_DIR, 'week2', 'task2', EXP_NAME) # Ground truth file path gt_file = os.path.join(w.ROOT_DIR, 'datasets', 'AICity_data', 'train', 'S03', 'c010', 'gt', 'gt.txt') # Create folders if they don't exist if not os.path.isdir(results_dir): os.mkdir(results_dir) # Get file paths for each of the frames and sort them according # to the frame number frame_paths = ut.get_files_from_dir2(frames_dir, ext='.jpg') frame_paths.sort(key=ut.natural_keys) # Total number of frames num_frames = len(frame_paths) # Flag to show the results based on image dimension color_flag = cv.IMREAD_GRAYSCALE if DIM <= 1 else cv.IMREAD_COLOR # Get the the images for training num_frames_test = int(num_frames * N) # Separate frames for training and testing train_frames = frame_paths[:num_frames_test] test_frames = frame_paths[num_frames_test:]
# For visulization import matplotlib.pyplot as plt import matplotlib.patches as patches """ task 1 1 Gaussian Background model Estimating on 25% of the video frame - Estimation of the background without consideration of the foreground in the gt.txt - Estimation " " with respect to the BBox - ignoring them from the calculation ' """ frames_dir = '../frames' gt_file = '../datasets/AICity_data/train/S03/c010/gt/gt.txt' frame_list = ut.get_files_from_dir2(frames_dir,ext = '.jpg') frame_list.sort(key=ut.natural_keys) output_dir = '../week2_results/' output_subdir = 'BG_1G/' exp_name = 'BG1G_noGT' if not os.path.isdir(output_dir+output_subdir): os.mkdir(output_dir+output_subdir) #frame_list = ut.get_files_from_dir(frames_dir, excl_ext='jpg') #print frame_list # training N =len(frame_list) d =1 COLOR_SPACE = None #cv.COLOR_BGR2HSV COLOR_CHANNELS = [] #[0,1]