def _load_checkpoint_to_net(config, network): """load parameters to network from checkpoint.""" if config.existed_ckpt: if config.existed_ckpt.endswith(".npz"): weights = np.load(config.existed_ckpt) else: weights = load_checkpoint(config.existed_ckpt) for param in network.trainable_params(): weights_name = param.name if weights_name not in weights: raise ValueError(f"Param {weights_name} is not found in ckpt file.") if isinstance(weights[weights_name], Parameter): param.set_data(weights[weights_name].data) elif isinstance(weights[weights_name], Tensor): param.set_data(Tensor(weights[weights_name].asnumpy(), config.dtype)) elif isinstance(weights[weights_name], np.ndarray): param.set_data(Tensor(weights[weights_name], config.dtype)) else: param.set_data(weights[weights_name]) else: for param in network.trainable_params(): name = param.name value = param.data if isinstance(value, Tensor): if name.endswith(".gamma"): param.set_data(one_weight(value.asnumpy().shape)) elif name.endswith(".beta") or name.endswith(".bias"): param.set_data(zero_weight(value.asnumpy().shape)) else: param.set_data(weight_variable(value.asnumpy().shape))
def _build_training_pipeline(config: TransformerConfig, pre_training_dataset=None, fine_tune_dataset=None, test_dataset=None): """ Build training pipeline. Args: config (TransformerConfig): Config of mass model. pre_training_dataset (Dataset): Pre-training dataset. fine_tune_dataset (Dataset): Fine-tune dataset. test_dataset (Dataset): Test dataset. """ net_with_loss = TransformerNetworkWithLoss(config, is_training=True) net_with_loss.init_parameters_data() if config.existed_ckpt: if config.existed_ckpt.endswith(".npz"): weights = np.load(config.existed_ckpt) else: weights = load_checkpoint(config.existed_ckpt) for param in net_with_loss.trainable_params(): weights_name = param.name if weights_name not in weights: raise ValueError( f"Param {weights_name} is not found in ckpt file.") if isinstance(weights[weights_name], Parameter): param.default_input = weights[weights_name].default_input elif isinstance(weights[weights_name], Tensor): param.default_input = Tensor(weights[weights_name].asnumpy(), config.dtype) elif isinstance(weights[weights_name], np.ndarray): param.default_input = Tensor(weights[weights_name], config.dtype) else: param.default_input = weights[weights_name] else: for param in net_with_loss.trainable_params(): name = param.name value = param.default_input if isinstance(value, Tensor): if name.endswith(".gamma"): param.default_input = one_weight(value.asnumpy().shape) elif name.endswith(".beta") or name.endswith(".bias"): param.default_input = zero_weight(value.asnumpy().shape) else: param.default_input = weight_variable( value.asnumpy().shape) dataset = pre_training_dataset if pre_training_dataset is not None \ else fine_tune_dataset if dataset is None: raise ValueError( "pre-training dataset or fine-tuning dataset must be provided one." ) update_steps = dataset.get_repeat_count() * dataset.get_dataset_size() if config.lr_scheduler == "isr": lr = Tensor(square_root_schedule( lr=config.lr, update_num=update_steps, decay_start_step=config.decay_start_step, warmup_steps=config.warmup_steps, min_lr=config.min_lr), dtype=mstype.float32) elif config.lr_scheduler == "poly": lr = Tensor(polynomial_decay_scheduler( lr=config.lr, min_lr=config.min_lr, decay_steps=config.decay_steps, total_update_num=update_steps, warmup_steps=config.warmup_steps, power=config.poly_lr_scheduler_power), dtype=mstype.float32) else: lr = config.lr if config.optimizer.lower() == "adam": optimizer = Adam(net_with_loss.trainable_params(), lr, beta1=0.9, beta2=0.98) elif config.optimizer.lower() == "lamb": lr = BertLearningRate(decay_steps=12000, learning_rate=config.lr, end_learning_rate=config.min_lr, power=10.0, warmup_steps=config.warmup_steps) decay_params = list( filter( lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x .name.lower(), net_with_loss.trainable_params())) other_params = list( filter( lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name. lower(), net_with_loss.trainable_params())) group_params = [{ 'params': decay_params, 'weight_decay': 0.01 }, { 'params': other_params }] optimizer = Lamb(group_params, lr, eps=1e-6) elif config.optimizer.lower() == "momentum": optimizer = Momentum(net_with_loss.trainable_params(), lr, momentum=0.9) else: raise ValueError(f"optimizer only support `adam` and `momentum` now.") # Dynamic loss scale. scale_manager = DynamicLossScaleManager( init_loss_scale=config.init_loss_scale, scale_factor=config.loss_scale_factor, scale_window=config.scale_window) net_with_grads = TransformerTrainOneStepWithLossScaleCell( network=net_with_loss, optimizer=optimizer, scale_update_cell=scale_manager.get_update_cell()) net_with_grads.set_train(True) model = Model(net_with_grads) loss_monitor = LossCallBack(config) ckpt_config = CheckpointConfig( save_checkpoint_steps=config.save_ckpt_steps, keep_checkpoint_max=config.keep_ckpt_max) rank_size = os.getenv('RANK_SIZE') callbacks = [loss_monitor] if rank_size is not None and int( rank_size) > 1 and MultiAscend.get_rank() % 8 == 0: ckpt_callback = ModelCheckpoint( prefix=config.ckpt_prefix, directory=os.path.join(config.ckpt_path, 'ckpt_{}'.format(os.getenv('DEVICE_ID'))), config=ckpt_config) callbacks.append(ckpt_callback) if rank_size is None or int(rank_size) == 1: ckpt_callback = ModelCheckpoint( prefix=config.ckpt_prefix, directory=os.path.join(config.ckpt_path, 'ckpt_{}'.format(os.getenv('DEVICE_ID'))), config=ckpt_config) callbacks.append(ckpt_callback) print(f" | ALL SET, PREPARE TO TRAIN.") _train(model=model, config=config, pre_training_dataset=pre_training_dataset, fine_tune_dataset=fine_tune_dataset, test_dataset=test_dataset, callbacks=callbacks)