Example #1
0
def merge_graphs():
    pubmed_graph = read_json(PROCESSED_PUBMED_FILEPATH)
    clinical_trials_graph = read_json(PROCESSED_CLINICAL_TRIALS_FILE_PATH)

    for drug in clinical_trials_graph.keys():
        if drug not in pubmed_graph.keys():
            pubmed_graph[drug] = clinical_trials_graph[drug]
        else:
            if 'clinical_trial' in clinical_trials_graph[drug].keys():
                pubmed_graph[drug]['clinical_trial'] = clinical_trials_graph[
                    drug]['clinical_trial']
            if 'journal' in clinical_trials_graph[drug].keys():
                if 'journal' not in pubmed_graph[drug].keys():
                    pubmed_graph[drug]['journal'] = clinical_trials_graph[
                        drug]['journal']
                else:
                    for journal in clinical_trials_graph[drug]['journal'].keys(
                    ):
                        if journal in pubmed_graph[drug]['journal'].keys():
                            pubmed_graph[drug]['journal'][
                                journal] += clinical_trials_graph[drug][
                                    'journal'][journal]
                        else:
                            pubmed_graph[drug]['journal'][
                                journal] = clinical_trials_graph[drug][
                                    'journal'][journal]

    return pubmed_graph
    def get_joints_labels_and_images(self) -> Tuple[dict, dict]:
        """Returns the dictionary conatinign the bound box of the image and dictionary
        containig image information.

        Returns:
            Tuple[dict, dict]: joints, image_dict
                image_dict
                    - `name` - Image name in the form
                        of `youtube/VIDEO_ID/video/frames/FRAME_ID.png`.
                    - `width` - Width of the image.
                    - `height` - Height of the image.
                    - `id` - Image ID.
                joints
                    - `joints` - 21 joints, containing bound box limits as vertices.
                    - `is_left` - Binary value indicating a right/left hand side.
                    - `image_id` - ID to the corresponding entry in `images`.
                    - `id` - Annotation ID (an image can contain multiple hands).
        """
        data_json_path = os.path.join(self.root_dir,
                                      f"youtube_{self.split}.json")
        joints_path = os.path.join(self.root_dir,
                                   f"youtube_{self.split}_joints.json")
        images_json_path = os.path.join(self.root_dir,
                                        f"youtube_{self.split}_images.json")
        if os.path.exists(joints_path) and os.path.exists(images_json_path):
            return read_json(joints_path), read_json(images_json_path)
        else:
            data_json = read_json(data_json_path)
            images_dict = data_json["images"]
            save_json(images_dict, images_json_path)
            annotations_dict = data_json["annotations"]
            joints = self.get_joints_from_annotations(annotations_dict)
            save_json(joints, joints_path)
            return joints, images_dict
    def from_args(cls, args: ArgumentParser, options: collections.namedtuple):
        """
        Initialize this class from some cli arguments. Used in train, test.
        """
        for opt in options:
            args.add_argument(*opt.flags, default=opt.default, type=opt.type, help=opt.help)
        if not isinstance(args, tuple):
            args = args.parse_args()

        if args.device is not None:
            os.environ["CUDA_VISIBLE_DEVICES"] = args.device
        if args.resume is not None:
            resume = Path(args.resume)
            cfg_fname = resume.parent / 'config.json'
        else:
            msg_no_cfg = "Configuration file need to be specified. Add '-c config.json', for example."
            assert args.config is not None, msg_no_cfg
            resume = None
            cfg_fname = Path(args.config)

        config = read_json(cfg_fname)
        if args.config and resume:
            # update new config for fine-tuning
            config.update(read_json(args.config))

        # parse custom cli options into dictionary
        modification = {opt.target: getattr(args, _get_opt_name(opt.flags)) for opt in options}
        return cls(config, resume, modification)
Example #4
0
 def get_meta_info(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, dict]:
     data = read_json(
         os.path.join(
             self.root_dir,
             self.annotation_sampling_folder,
             self.annotor,
             f"InterHand2.6M_{self.split}_data.json",
         )
     )
     camera_info = pd.DataFrame(
         read_json(
             os.path.join(
                 self.root_dir,
                 self.annotation_sampling_folder,
                 self.annotor,
                 f"InterHand2.6M_{self.split}_camera.json",
             )
         )
     ).T
     joints_dict = read_json(
         os.path.join(
             self.root_dir,
             self.annotation_sampling_folder,
             self.annotor,
             f"InterHand2.6M_{self.split}_joint_3d.json",
         )
     )
     annotations_info = pd.DataFrame(data["annotations"])
     # selecting only single hand images
     annotations_info = annotations_info[
         annotations_info["hand_type"] != "interacting"
     ]
     annotations_info = annotations_info.set_index(np.arange(len(annotations_info)))
     image_info = pd.DataFrame(data["images"]).set_index("id")
     return image_info, annotations_info, camera_info, joints_dict
Example #5
0
def proportion_daily_country(data_type, country):
    try:
        data = util.read_json(f"csv_{data_type}.json")
        ret = {"proportion-daily": {}}
        for region in list(data.keys()):
            if util.pattern_match(country, region, data[region]["iso2"],
                                  data[region]["iso3"]):

                if data[region]["iso3"] in util.populations:
                    pop = float(util.populations[data[region]["iso3"]])
                else:
                    util.populations = util.csv_to_dict(util.CSV_POPULATIONS)
                    pop = float(util.populations[data[region]["iso3"]])

                prev = 0
                for d, h in data[region]["history"].items():
                    ret["proportion-daily"][
                        d] = f"{round((h - prev) / pop * 100, 10):.10f}"
                    prev = h
                ret["iso2"] = data[region]["iso2"]
                ret["iso3"] = data[region]["iso3"]
                ret["name"] = region
                return jsonify(ret)
        raise CountryNotFound("This region cannot be found. Please try again.")
    except CountryNotFound as e:
        return util.response_error(message=f"{type(e).__name__} : {e}",
                                   status=404)
    except Exception as e:
        return util.response_error(message=f"{type(e).__name__} : {e}")
Example #6
0
 def get_scale(self) -> list:
     """Extacts the scale from freihand data."""
     if self.split in ["train", "val"]:
         labels_path = os.path.join(self.root_dir, "training_scale.json")
     else:
         labels_path = os.path.join(self.root_dir, "evaluation_scale.json")
     return read_json(labels_path)
    def test_cal_loss3d(self):
        print("Running test on 3d loss calculation")
        train_param = edict(read_json(TRAINING_CONFIG_PATH))
        data = DataLoader(
            Data_Set(
                train_param,
                None,
                split="val",
                experiment_type="supervised",
                source="freihand",
            ),
            batch_size=12,
        )
        loss3d = 100
        for i in iter(data):
            sample = i
            loss3d = cal_3d_loss(
                sample["joints"],
                sample["joints3D"] + 5,
                sample["scale"],
                sample["K"],
                sample["joints_valid"],
            )
            print(loss3d)
            break

        self.assertTrue((loss3d - 5 < 1e-6).tolist())
Example #8
0
def proportion_daily(data_type):
    try:
        data = util.read_json(f"csv_{data_type}.json")
        for region in list(data.keys()):
            ret = {"proportion-daily": {}}

            if data[region]["iso3"] == "":
                # TODO: Note, some regions do not have iso2/3 codes....
                data[region] = {
                    "proportion-daily":
                    "This region doesn't work with this function atm"
                }
                continue
            if data[region]["iso3"] in util.populations:
                pop = float(util.populations[data[region]["iso3"]])
            else:
                util.populations = util.csv_to_dict(util.CSV_POPULATIONS)
                pop = float(util.populations[data[region]["iso3"]])

            prev = 0
            for d, h in data[region]["history"].items():
                ret["proportion-daily"][
                    d] = f"{round((h - prev) / pop * 100, 10):.10f}"
                prev = int(h)

            ret["iso2"] = data[region]["iso2"]
            ret["iso3"] = data[region]["iso3"]
            data[region] = ret
        return jsonify(data)
    except Exception as e:
        return util.response_error(message=f"{type(e).__name__} : {e}")
Example #9
0
 def __init__(self):
     super().__init__()
     self.swaprb = True
     self.class_names = read_json('./models/ssd_mobilenet/labels.json')
     self.model = cv2.dnn.readNetFromTensorflow(
         'models/ssd_mobilenet/frozen_inference_graph.pb',
         'models/ssd_mobilenet/ssd_mobilenet_v2_coco_2018_03_29.pbtxt')
     self.colors = np.random.uniform(0, 255, size=(100, 3))
Example #10
0
def history_region_all(data_type, country):
    try:
        if country.lower() in ("us", "united states", "usa"):
            data = util.read_json(f"csv_{data_type}_us_region.json")
        else:
            data = util.read_json(f"csv_{data_type}_region.json")
        for inner_country in list(data.keys()):
            if util.pattern_match(country, inner_country,
                                  data[inner_country]["iso2"],
                                  data[inner_country]["iso3"]):
                return jsonify(data[inner_country]["regions"])
        raise CountryNotFound(
            "This country cannot be found. Please try again.")
    except CountryNotFound as e:
        return util.response_error(message=f"{type(e).__name__} : {e}",
                                   status=404)
    except Exception as e:
        return util.response_error(message=f"{type(e).__name__} : {e}")
Example #11
0
 def __init__(self,
              list_txt_path,
              npz_config_path,
              fetched_slot_names,
              if_random_shuffle=True):
     self.list_npz_file = self.read_list_txt(list_txt_path)
     self.npz_config = read_json(npz_config_path)
     self.fetched_slot_names = set(fetched_slot_names)
     self.if_random_shuffle = if_random_shuffle
Example #12
0
def main(args):
    print_args(args, 'args')
    conf = Config(args.exp)

    ### build model
    npz_config = read_json(conf.npz_config_path)
    scope = fluid.Scope()
    with fluid.scope_guard(scope):
        with fluid.unique_name.guard():
            if args.model == 'UniRNN':
                model = RLUniRNN(conf,
                                 npz_config,
                                 candidate_encode=args.candidate_encode)
            elif args.model == 'PointerNet':
                model = RLPointerNet(conf,
                                     npz_config,
                                     candidate_encode=args.candidate_encode)
            algorithm = RLAlgorithm(model,
                                    optimizer=conf.optimizer,
                                    lr=conf.lr,
                                    gpu_id=(0 if args.use_cuda == 1 else -1),
                                    gamma=args.gamma)
    td_ct = RLComputationTask(algorithm,
                              model_dir=conf.model_dir,
                              mode=args.train_mode,
                              scope=scope)

    # get eval model
    eval_args = copy.deepcopy(args)
    eval_args.exp = args.eval_exp
    eval_args.model = args.eval_model
    eval_args.task = 'eval'
    eval_td_ct = eval_entry_func(eval_args)

    ### other tasks
    if args.task == 'eps_greedy_sampling':
        eps_greedy_sampling(td_ct, eval_td_ct, args, conf, None,
                            td_ct.ckp_step)
        exit()
    elif args.task == 'evaluate':
        evaluate(td_ct, eval_td_ct, args, conf, td_ct.ckp_step)
        exit()

    ### start training
    memory_size = 1000
    replay_memory = collections.deque(maxlen=memory_size)
    summary_writer = tf.summary.FileWriter(conf.summary_dir)
    for epoch_id in range(td_ct.ckp_step + 1, conf.max_train_steps):
        if args.log_reward == 1:
            log_train(td_ct, args, conf, summary_writer, replay_memory,
                      epoch_id)
        else:
            train(td_ct, eval_td_ct, args, conf, summary_writer, replay_memory,
                  epoch_id)
        td_ct.save_model(conf.model_dir, epoch_id)
        eps_greedy_sampling(td_ct, eval_td_ct, args, conf, summary_writer,
                            epoch_id)
Example #13
0
 def get_camera_param(self) -> list:
     """Extacts the camera parameters from the camera_param_json at camera_param_path.
     Returns:
         list: List of camera paramters for all images(32650)
     """
     if self.split in ["train", "val"]:
         camera_param_path = os.path.join(self.root_dir, "training_K.json")
     else:
         camera_param_path = os.path.join(self.root_dir, "evaluation_K.json")
     return read_json(camera_param_path)
Example #14
0
 def get_labels(self) -> list:
     """Extacts the labels(joints coordinates) from the label_json at labels_path
     Returns:
         list: List of all the the coordinates(32650).
     """
     if self.split in ["train", "val"]:
         labels_path = os.path.join(self.root_dir, "training_xyz.json")
         return read_json(labels_path)
     else:
         return None
Example #15
0
 def test_vasp_001_shell_job(self):
     """
     Extracts a job from a vasp calculation and asserts the results.
     """
     config = Job("External Job", os.path.join(FIXTURES_DIR,
                                               "vasp/test-001")).to_json()
     self._clean_job_config(config)
     self.assertDeepAlmostEqual(
         config,
         read_json(os.path.join(FIXTURES_DIR, "vasp", "shell-job.json")))
Example #16
0
def get_ct_cf(exp, use_cuda, train_mode, output_type, output_dim):
    conf = Config_Env(exp)
    npz_config = read_json(conf.npz_config_path)
    scope = fluid.Scope()
    model = NeuralCF(conf, npz_config, 
                   scope=scope, 
                   output_type=output_type, 
                   output_dim=output_dim)
    algorithm = CFAlgorithm(model, optimizer=conf.optimizer, lr=conf.lr, gpu_id=(0 if use_cuda else -1))
    ct = GenComputationTask(algorithm, model_dir=conf.model_dir, mode=train_mode)
    return ct
Example #17
0
    def get_flops(self):
        input_size = [512, 512]  # for PASCAL-Context

        filename = Path('flops_MobileNetV2_{}_{}.json'.format(
            input_size[0], input_size[1]))
        if filename.is_file():
            flops_dict = utils.read_json(filename)
        else:
            print('no LUT found, calculating FLOPS...')
            flops_dict = self.calculate_flops_lut(filename, input_size)
        return flops_dict['per_block_flops']
 def get_labels(self) -> Dict[str, dict]:
     label_file_names = [
         file_name for file_name in next(os.walk(self.label_dir_path))[2]
         if ".json" in file_name
     ]
     labels = {
         file_name.replace(".json", ""):
         read_json(os.path.join(self.label_dir_path, file_name))
         for file_name in label_file_names
     }
     return labels
Example #19
0
def all_country(country):
    try:
        data = util.read_json("data.json")
        for region in data:
            if util.pattern_match(country, region["country"], region["iso2"],
                                  region["iso3"]):
                return jsonify(region)
        raise CountryNotFound("This region cannot be found. Please try again.")
    except CountryNotFound as e:
        return util.response_error(message=f"{type(e).__name__} : {e}",
                                   status=404)
    except Exception as e:
        return util.response_error(message=f"{type(e).__name__} : {e}")
 def __init__(self):
     super().__init__()
     self.class_names = read_json('./models/yolo/labels.json')
     self.model = cv2.dnn.readNetFromDarknet(
         # 'models/yolo/yolov3.cfg',
         # 'models/yolo/yolov3.weights')
         'models/yolo/yolov3-tiny.cfg',
         'models/yolo/yolov3-tiny.weights')
     self.colors = np.random.uniform(0, 255, size=(len(self.class_names), 3))
     self.threshold = 0.3
     self.scale = 0.00392  # 1/255
     self.nms_threshold = 0.4  # Non Maximum Supression threshold
     self.swaprb = True
 def __read_messages(self, inbox_path):
     messages = []
     oldest_timestamp_ms = 100000000000000
     for msg_file in os.scandir(inbox_path):
         if not msg_file.is_file() or not msg_file.name.startswith("message_"):
             continue
         json = utils.read_json(msg_file.path)
         for participant in json["participants"]:
             self.__name_inference_counter[participant["name"]] += 1
         for msg_json in json["messages"]:
             messages.append(Message(**msg_json))
             oldest_timestamp_ms = min(oldest_timestamp_ms, msg_json["timestamp_ms"])
     return messages, oldest_timestamp_ms
Example #22
0
    def do_grouping(self, content_id, custom_comparing=None):
        self.changed = True

        # create groups with full content and comparison information
        if custom_comparing is None:
            custom_comparing = self.custom_comparing
        groups_and_stats = utils.get_grouped_responses(
            self.results['contents'][content_id], custom_comparing)

        # turn content into dict of groups, stats and created files (responses are now stored in the groups)
        self.results['contents'][content_id] = groups_and_stats
        self.results['contents'][content_id]['files'] = []

        # add a combined and enriched representative response for every group
        for i, group in enumerate(
                self.results['contents'][content_id]['groups']):
            representative = copy.deepcopy(group['responses'][0])
            representative[
                'body_length'] = f"{len(representative['body'])} bytes"
            representative[
                'headers_length'] = f"{len(utils.format_json(representative['headers']))} bytes"
            # get min-max send and response times
            keys_of_interest = ['send_time', 'response_time']
            min_max = self.get_min_max_dates(group['responses'],
                                             keys_of_interest)
            if len(min_max.keys()) > len(keys_of_interest):
                # there is at least one difference, update repr. keys
                for key in keys_of_interest:
                    if key + "_min" in min_max:
                        representative[key + "_min"] = min_max[key + "_min"]
                        representative[key + "_max"] = min_max[key + "_max"]
                        del representative[key]
            # parse body if the content is known (HTML or JSON)
            content_type = self.get_content_type(representative['headers'],
                                                 representative['body'])
            if content_type == 'html':
                link, path = self.create_temp_html(
                    f"{self.name}-req-{content_id}-group-{i}",
                    representative['body'], "html")
                self.results['contents'][content_id]['files'].append(path)
                representative['body'] = link
            elif content_type == 'json':
                # it defaults to no parsing if the content is not json after all..
                try:
                    representative['body'] = utils.read_json(
                        representative['body'])
                except Exception as _:
                    pass

            self.results['contents'][content_id]['groups'][i][
                'representative'] = representative
Example #23
0
def get_ct_ddpg(exp, use_cuda, train_mode, gamma):
    conf = Config_Env(exp)
    npz_config = read_json(conf.npz_config_path)
    scope = fluid.Scope()
    with fluid.scope_guard(scope):
        with fluid.unique_name.guard():
            model = DDPGRNN(conf, npz_config)
            algorithm = DDPGAlgorithm(model,
                                    optimizer=conf.optimizer, 
                                    lr=conf.lr,
                                    gpu_id=(0 if use_cuda == 1 else -1),
                                    gamma=gamma)
    ct = RLComputationTask(algorithm, model_dir=conf.model_dir, mode=train_mode, scope=scope)
    return ct
Example #24
0
def main(args):
    print_args(args, 'args')
    conf = Config(args.exp)

    ### build model
    npz_config = read_json(conf.npz_config_path)
    scope = fluid.Scope()
    with fluid.scope_guard(scope):
        with fluid.unique_name.guard():
            if args.model == 'DNN':
                model = DNN(conf, npz_config)
            elif args.model == 'UniRNN':
                model = UniRNN(conf, npz_config)

            algorithm = GenAlgorithm(model,
                                     optimizer=conf.optimizer,
                                     lr=conf.lr,
                                     gpu_id=(0 if args.use_cuda == 1 else -1))
            td_ct = GenComputationTask(algorithm,
                                       model_dir=conf.model_dir,
                                       mode=args.train_mode,
                                       scope=scope)

    # get eval model
    eval_args = copy.deepcopy(args)
    eval_args.exp = args.eval_exp
    eval_args.model = args.eval_model
    eval_args.task = 'eval'
    eval_td_ct = eval_entry_func(eval_args)

    ### other tasks
    if args.task == 'test':
        test(td_ct, args, conf, None, td_ct.ckp_step)
        exit()
    elif args.task == 'eps_greedy_sampling':
        eps_greedy_sampling(td_ct, eval_td_ct, args, conf, None,
                            td_ct.ckp_step)
        exit()
    elif args.task == 'evaluate':
        evaluate(td_ct, eval_td_ct, args, conf, td_ct.ckp_step)
        exit()

    ### start training
    summary_writer = tf.summary.FileWriter(conf.summary_dir)
    for epoch_id in range(td_ct.ckp_step + 1, conf.max_train_steps):
        train(td_ct, args, conf, summary_writer, epoch_id)
        td_ct.save_model(conf.model_dir, epoch_id)
        test(td_ct, args, conf, summary_writer, epoch_id)
        eps_greedy_sampling(td_ct, eval_td_ct, args, conf, summary_writer,
                            epoch_id)
Example #25
0
def history_region_world(data_type):
    try:

        data = util.read_json(f"csv_{data_type}.json")
        ret = {"history": {}}
        for d in data.keys():
            for h in data[d]["history"].keys():
                if h not in ret["history"]:
                    ret["history"][h] = int(data[d]["history"][h])
                else:
                    ret["history"][h] += int(data[d]["history"][h])
        return jsonify(ret)
    except Exception as e:
        return util.response_error(message=f"{type(e).__name__} : {e}")
Example #26
0
    def __init__(self,
                 list_txt_path,
                 npz_config_path,
                 fetched_slot_names,
                 credit_dataset=None,
                 if_random_shuffle=True,
                 one_pass=True):
        self.list_npz_file = self.read_list_txt(list_txt_path)
        self.npz_config = read_json(npz_config_path)
        self.fetched_slot_names = set(fetched_slot_names)
        self.credit_dataset = credit_dataset
        self.if_random_shuffle = if_random_shuffle
        self.one_pass = one_pass

        self._check_credits_exists()
Example #27
0
def get_ct_credit(exp, use_cuda, train_mode, credit_scale):
    conf = Config_Env(exp, label_type='credit')
    npz_config = read_json(conf.npz_config_path)
    scope = fluid.Scope()
    model = UniRNN(conf, npz_config, 
                   scope=scope, 
                   cell_type='gru',
                   output_type='credit')
    algorithm = GenAlgorithm(model, 
                            optimizer=conf.optimizer, 
                            lr=conf.lr, 
                            gpu_id=(0 if use_cuda else -1), 
                            credit_scale=credit_scale)
    ct = GenComputationTask(algorithm, model_dir=conf.model_dir, mode=train_mode)
    return ct
Example #28
0
def history_country(data_type, country):
    try:
        data = util.read_json(f"csv_{data_type}.json")
        for region in list(data.keys()):
            if util.pattern_match(country, region, data[region]["iso2"],
                                  data[region]["iso3"]):
                ret = data[region]
                ret["name"] = region
                return jsonify(ret)
        raise CountryNotFound("This region cannot be found. Please try again.")
    except CountryNotFound as e:
        return util.response_error(message=f"{type(e).__name__} : {e}",
                                   status=404)
    except Exception as e:
        return util.response_error(message=f"{type(e).__name__} : {e}")
Example #29
0
def proportion_region_world(data_type):
    try:
        data = util.read_json(f"csv_{data_type}.json")
        ret = {"proportion": {}}
        for d in data.keys():
            for h in data[d]["history"].keys():
                if h not in ret["proportion"]:
                    ret["proportion"][h] = int(data[d]["history"][h])
                else:
                    ret["proportion"][h] += int(data[d]["history"][h])
        for h in ret["proportion"]:
            ret["proportion"][
                h] = f"{round(int(ret['proportion'][h]) / int(util.WORLD_POPULATION) * 100, 5):.5f}"
        return jsonify(ret)
    except Exception as e:
        return util.response_error(message=f"{type(e).__name__} : {e}")
Example #30
0
def daily(data_type):
    try:
        data = util.read_json(f"csv_{data_type}.json")
        for region in list(data.keys()):
            ret = {"daily": {}}

            prev = 0
            for d, h in data[region]["history"].items():
                ret["daily"][d] = h - prev
                prev = int(h)

            ret["iso2"] = data[region]["iso2"]
            ret["iso3"] = data[region]["iso3"]
            data[region] = ret
        return jsonify(data)
    except Exception as e:
        return util.response_error(message=f"{type(e).__name__} : {e}")