Example #1
0
def main(config):
    """
    Main function for training LSTMs.
    After training, results on validation & test sets are recorded in the specified log_path.
    """
    dataset, train_loader, subgraph_loader = get_data(config)

    # define logger
    Path(config['log_path']).mkdir(parents=True, exist_ok=True)
    logger = loggers.TensorBoardLogger(config['log_path'],
                                       version=config['version'])
    logger.log_hyperparams(params=config)

    # define model
    model = Model(config, dataset, train_loader, subgraph_loader)
    chkpt = None if config['load'] is None else get_checkpoint_path(
        config['load'])

    trainer = pl.Trainer(gpus=config['gpus'],
                         logger=logger,
                         max_epochs=config['epochs'],
                         distributed_backend='dp',
                         precision=16 if config['use_amp'] else 32,
                         default_root_dir=config['log_path'],
                         deterministic=True,
                         resume_from_checkpoint=chkpt,
                         auto_lr_find=config['auto_lr'],
                         auto_scale_batch_size=config['auto_bsz'])
    trainer.fit(model)

    for phase in ['test', 'valid']:
        if phase == 'valid':
            trainer.eval_split = 'val'
            trainer.eval_mask = dataset.data.val_mask
            print(phase, trainer.eval_split)
        ret = trainer.test()
        if isinstance(ret, list):
            ret = ret[0]

        per_node = ret.pop('per_node')
        test_results = ret
        res_dir = Path(config['log_path']) / 'default'
        if config['version'] is not None:
            res_dir = res_dir / config['version']
        else:
            res_dir = res_dir / ('results_' + str(config['seed']))
        print(phase, ':', test_results)
        Path(res_dir).mkdir(parents=True, exist_ok=True)
        write_json(test_results,
                   res_dir / f'{phase}_results.json',
                   sort_keys=True,
                   verbose=True)
        write_pkl(per_node, res_dir / f'{phase}_per_node.pkl')

        path_results = Path(config['log_path']) / f'all_{phase}_results.csv'
        record_results(path_results, config, test_results)
Example #2
0
def main_test(hparams, path_results=None):
    """
    main function to load and evaluate a trained model. 
    """
    assert (hparams['load'] is not None) and (hparams['phase'] is not None)
    phase = hparams['phase']
    log_dir = hparams['load']

    # Load trained model
    print(f'Loading from {log_dir} to evaluate {phase} data.')

    model, config, dataset, train_loader, subgraph_loader = Model.load_model(
        log_dir,
        multi_gpu=hparams['multi_gpu'],
        num_workers=hparams['num_workers'])
    trainer = pl.Trainer(gpus=hparams['gpus'],
                         logger=None,
                         max_epochs=hparams['epochs'],
                         default_root_dir=hparams['log_path'],
                         deterministic=True)
    # Evaluate the model
    if phase == 'valid':
        trainer.eval_split = 'val'
        trainer.eval_mask = dataset.data.val_mask
        print(phase, trainer.eval_split)

    test_results = trainer.test(model)
    if isinstance(test_results, list):
        test_results = test_results[0]
    per_node = test_results.pop('per_node')
    print(phase, ':', test_results)
    # Save evaluation results
    results_path = Path(log_dir) / f'{phase}_results.json'
    write_json(test_results, results_path, sort_keys=True, verbose=True)
    write_pkl(per_node, Path(log_dir) / f'{phase}_per_node.pkl')

    if path_results is None:
        path_results = Path(log_dir).parent / 'results.csv'
    tmp = {'version': hparams['version']}
    tmp = {**tmp, **config}
    record_results(path_results, tmp, test_results)
Example #3
0
def main_test(hparams, path_results=None):
    """
    main function to load and evaluate a trained model. 
    """
    assert (hparams['load'] is not None) and (hparams['phase'] is not None)
    phase = hparams['phase']
    log_dir = hparams['load']

    # Load trained model
    print(f'Loading from {log_dir} to evaluate {phase} data.')

    model, config, loaderDict, collate = DynamicGraphModel.load_model(log_dir, \
        data_dir=hparams['data_dir'], 
        multi_gpu=hparams['multi_gpu'], num_workers=hparams['num_workers'])
    trainer = pl.Trainer(
        gpus=hparams['gpus'],
        logger=None,
        max_epochs=hparams['epochs'],
        default_root_dir=hparams['log_path'],
        deterministic=True
    )
    # Evaluate the model
    test_dataloader = DataLoader(loaderDict[phase], collate_fn=collate, batch_size=config['batch_size'], num_workers=config['num_workers'], shuffle=False)
    test_results = trainer.test(model, test_dataloaders=test_dataloader)
    if isinstance(test_results, list):
        test_results = test_results[0]
    per_node = test_results.pop('per_node')
    print(phase, ':', test_results)
    # Save evaluation results
    results_path = Path(log_dir) / f'{phase}_results.json'
    write_json(test_results, results_path, sort_keys=True, verbose=True)
    write_pkl(per_node, Path(log_dir) / f'{phase}_per_node.pkl')

    if path_results is None:
        path_results = Path(log_dir).parent / 'results.csv'
    tmp = {'version': hparams['version']}
    tmp = {**tmp, **config}
    record_results(path_results, tmp, test_results)