def run_predistill(): """ run predistill """ cfg = phase1_cfg context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id) context.set_context(reserve_class_name_in_scope=False) load_teacher_checkpoint_path = args_opt.load_teacher_ckpt_path load_student_checkpoint_path = args_opt.load_gd_ckpt_path netwithloss = BertNetworkWithLoss_td(teacher_config=td_teacher_net_cfg, teacher_ckpt=load_teacher_checkpoint_path, student_config=td_student_net_cfg, student_ckpt=load_student_checkpoint_path, is_training=True, task_type='classification', num_labels=args_opt.num_labels, is_predistill=True) rank = 0 device_num = 1 dataset = create_tinybert_dataset('td', td_teacher_net_cfg.batch_size, device_num, rank, args_opt.do_shuffle, args_opt.train_data_dir, args_opt.schema_dir) dataset_size = dataset.get_dataset_size() print('td1 dataset size: ', dataset_size) if args_opt.enable_data_sink == 'true': repeat_count = args_opt.td_phase1_epoch_size * dataset.get_dataset_size() // args_opt.data_sink_steps time_monitor_steps = args_opt.data_sink_steps else: repeat_count = args_opt.td_phase1_epoch_size time_monitor_steps = dataset_size optimizer_cfg = cfg.optimizer_cfg lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate, end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate, warmup_steps=int(dataset_size / 10), decay_steps=int(dataset_size * args_opt.td_phase1_epoch_size), power=optimizer_cfg.AdamWeightDecay.power) params = netwithloss.trainable_params() decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params)) other_params = list(filter(lambda x: not cfg.AdamWeightDecay.decay_filter(x), params)) group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay}, {'params': other_params, 'weight_decay': 0.0}, {'order_params': params}] optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps) callback = [TimeMonitor(time_monitor_steps), LossCallBack(), ModelSaveCkpt(netwithloss.bert, args_opt.save_ckpt_step, args_opt.max_ckpt_num, td_phase1_save_ckpt_dir)] update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value, scale_factor=cfg.scale_factor, scale_window=cfg.scale_window) netwithgrads = BertEvaluationCell(netwithloss, optimizer=optimizer, scale_update_cell=update_cell) model = Model(netwithgrads) model.train(repeat_count, dataset, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == 'true'), sink_size=args_opt.data_sink_steps)
def run_general_distill(): """ run general distill """ parser = argparse.ArgumentParser(description='tinybert general distill') parser.add_argument( '--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'], help='device where the code will be implemented. (Default: Ascend)') parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.") parser.add_argument("--epoch_size", type=int, default="3", help="Epoch size, default is 1.") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") parser.add_argument("--save_ckpt_step", type=int, default=100, help="Enable data sink, default is true.") parser.add_argument("--max_ckpt_num", type=int, default=1, help="Enable data sink, default is true.") parser.add_argument("--do_shuffle", type=str, default="true", help="Enable shuffle for dataset, default is true.") parser.add_argument("--enable_data_sink", type=str, default="true", help="Enable data sink, default is true.") parser.add_argument("--data_sink_steps", type=int, default=1, help="Sink steps for each epoch, default is 1.") parser.add_argument("--save_ckpt_path", type=str, default="", help="Save checkpoint path") parser.add_argument("--load_teacher_ckpt_path", type=str, default="", help="Load checkpoint file path") parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path") parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id) context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id) context.set_context(reserve_class_name_in_scope=False) context.set_context(variable_memory_max_size="30GB") save_ckpt_dir = os.path.join( args_opt.save_ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) if not os.path.exists(save_ckpt_dir): os.makedirs(save_ckpt_dir) if args_opt.distribute == "true": D.init('hccl') device_num = args_opt.device_num rank = args_opt.device_id % device_num context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, device_num=device_num) else: rank = 0 device_num = 1 netwithloss = BertNetworkWithLoss_gd( teacher_config=bert_teacher_net_cfg, teacher_ckpt=args_opt.load_teacher_ckpt_path, student_config=bert_student_net_cfg, is_training=True, use_one_hot_embeddings=False) dataset = create_tinybert_dataset('gd', bert_teacher_net_cfg.batch_size, device_num, rank, args_opt.do_shuffle, args_opt.data_dir, args_opt.schema_dir) dataset_size = dataset.get_dataset_size() print('dataset size: ', dataset_size) if args_opt.enable_data_sink == "true": repeat_count = args_opt.epoch_size * dataset.get_dataset_size( ) // args_opt.data_sink_steps time_monitor_steps = args_opt.data_sink_steps else: repeat_count = args_opt.epoch_size time_monitor_steps = dataset_size lr_schedule = BertLearningRate( learning_rate=common_cfg.AdamWeightDecay.learning_rate, end_learning_rate=common_cfg.AdamWeightDecay.end_learning_rate, warmup_steps=int(dataset_size * args_opt.epoch_size / 10), decay_steps=int(dataset_size * args_opt.epoch_size), power=common_cfg.AdamWeightDecay.power) params = netwithloss.trainable_params() decay_params = list(filter(common_cfg.AdamWeightDecay.decay_filter, params)) other_params = list( filter(lambda x: not cfg.AdamWeightDecay.decay_filter(x), params)) group_params = [{ 'params': decay_params, 'weight_decay': common_cfg.AdamWeightDecay.weight_decay }, { 'params': other_params, 'weight_decay': 0.0 }, { 'order_params': params }] optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=common_cfg.AdamWeightDecay.eps) callback = [ TimeMonitor(time_monitor_steps), LossCallBack(), ModelSaveCkpt(netwithloss.bert, args_opt.save_ckpt_step, args_opt.max_ckpt_num, save_ckpt_dir) ] update_cell = DynamicLossScaleUpdateCell( loss_scale_value=common_cfg.loss_scale_value, scale_factor=common_cfg.scale_factor, scale_window=common_cfg.scale_window) netwithgrads = BertTrainWithLossScaleCell(netwithloss, optimizer=optimizer, scale_update_cell=update_cell) model = Model(netwithgrads) model.train(repeat_count, dataset, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == "true"), sink_size=args_opt.data_sink_steps)
def run_task_distill(ckpt_file): """ run task distill """ if ckpt_file == '': raise ValueError("Student ckpt file should not be None") cfg = phase2_cfg load_teacher_checkpoint_path = args_opt.load_teacher_ckpt_path load_student_checkpoint_path = ckpt_file netwithloss = BertNetworkWithLoss_td( teacher_config=td_teacher_net_cfg, teacher_ckpt=load_teacher_checkpoint_path, student_config=td_student_net_cfg, student_ckpt=load_student_checkpoint_path, is_training=True, task_type=args_opt.task_type, num_labels=task.num_labels, is_predistill=False) rank = 0 device_num = 1 train_dataset = create_tinybert_dataset('td', cfg.batch_size, device_num, rank, args_opt.do_shuffle, args_opt.train_data_dir, args_opt.schema_dir, data_type=dataset_type) dataset_size = train_dataset.get_dataset_size() print('td2 train dataset size: ', dataset_size) print('td2 train dataset repeatcount: ', train_dataset.get_repeat_count()) if args_opt.enable_data_sink == 'true': repeat_count = args_opt.td_phase2_epoch_size * train_dataset.get_dataset_size( ) // args_opt.data_sink_steps time_monitor_steps = args_opt.data_sink_steps else: repeat_count = args_opt.td_phase2_epoch_size time_monitor_steps = dataset_size optimizer_cfg = cfg.optimizer_cfg lr_schedule = BertLearningRate( learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate, end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate, warmup_steps=int(dataset_size * args_opt.td_phase2_epoch_size / 10), decay_steps=int(dataset_size * args_opt.td_phase2_epoch_size), power=optimizer_cfg.AdamWeightDecay.power) params = netwithloss.trainable_params() decay_params = list( filter(optimizer_cfg.AdamWeightDecay.decay_filter, params)) other_params = list( filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params)) group_params = [{ 'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay }, { 'params': other_params, 'weight_decay': 0.0 }, { 'order_params': params }] optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps) eval_dataset = create_tinybert_dataset('td', eval_cfg.batch_size, device_num, rank, args_opt.do_shuffle, args_opt.eval_data_dir, args_opt.schema_dir, data_type=dataset_type) print('td2 eval dataset size: ', eval_dataset.get_dataset_size()) if args_opt.do_eval.lower() == "true": callback = [ TimeMonitor(time_monitor_steps), LossCallBack(), EvalCallBack(netwithloss.bert, eval_dataset) ] else: callback = [ TimeMonitor(time_monitor_steps), LossCallBack(), ModelSaveCkpt(netwithloss.bert, args_opt.save_ckpt_step, args_opt.max_ckpt_num, td_phase2_save_ckpt_dir) ] if enable_loss_scale: update_cell = DynamicLossScaleUpdateCell( loss_scale_value=cfg.loss_scale_value, scale_factor=cfg.scale_factor, scale_window=cfg.scale_window) netwithgrads = BertEvaluationWithLossScaleCell( netwithloss, optimizer=optimizer, scale_update_cell=update_cell) else: netwithgrads = BertEvaluationCell(netwithloss, optimizer=optimizer) model = Model(netwithgrads) model.train(repeat_count, train_dataset, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == 'true'), sink_size=args_opt.data_sink_steps)
def run_general_distill(): """ run general distill """ parser = argparse.ArgumentParser(description='tinybert general distill') parser.add_argument( '--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'], help='device where the code will be implemented. (Default: Ascend)') parser.add_argument("--distribute", type=str, default="false", choices=["true", "false"], help="Run distribute, default is false.") parser.add_argument("--epoch_size", type=int, default="3", help="Epoch size, default is 1.") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") parser.add_argument("--save_ckpt_step", type=int, default=100, help="Enable data sink, default is true.") parser.add_argument("--max_ckpt_num", type=int, default=1, help="Enable data sink, default is true.") parser.add_argument("--do_shuffle", type=str, default="true", choices=["true", "false"], help="Enable shuffle for dataset, default is true.") parser.add_argument("--enable_data_sink", type=str, default="true", choices=["true", "false"], help="Enable data sink, default is true.") parser.add_argument("--data_sink_steps", type=int, default=1, help="Sink steps for each epoch, default is 1.") parser.add_argument("--save_ckpt_path", type=str, default="", help="Save checkpoint path") parser.add_argument("--load_teacher_ckpt_path", type=str, default="", help="Load checkpoint file path") parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path") parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path") parser.add_argument( "--dataset_type", type=str, default="tfrecord", help="dataset type tfrecord/mindrecord, default is tfrecord") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id) context.set_context(reserve_class_name_in_scope=False) context.set_context(variable_memory_max_size="30GB") save_ckpt_dir = os.path.join( args_opt.save_ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) if args_opt.distribute == "true": if args_opt.device_target == 'Ascend': D.init() device_num = args_opt.device_num rank = args_opt.device_id % device_num else: D.init() device_num = D.get_group_size() rank = D.get_rank() save_ckpt_dir = save_ckpt_dir + '_ckpt_' + str(rank) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, device_num=device_num) else: rank = 0 device_num = 1 if not os.path.exists(save_ckpt_dir): os.makedirs(save_ckpt_dir) enable_loss_scale = True if args_opt.device_target == "GPU": if bert_student_net_cfg.compute_type != mstype.float32: logger.warning( 'Compute about the student only support float32 temporarily, run with float32.' ) bert_student_net_cfg.compute_type = mstype.float32 # Backward of the network are calculated using fp32, # and the loss scale is not necessary enable_loss_scale = False netwithloss = BertNetworkWithLoss_gd( teacher_config=bert_teacher_net_cfg, teacher_ckpt=args_opt.load_teacher_ckpt_path, student_config=bert_student_net_cfg, is_training=True, use_one_hot_embeddings=False) if args_opt.dataset_type == "tfrecord": dataset_type = DataType.TFRECORD elif args_opt.dataset_type == "mindrecord": dataset_type = DataType.MINDRECORD else: raise Exception("dataset format is not supported yet") dataset = create_tinybert_dataset('gd', common_cfg.batch_size, device_num, rank, args_opt.do_shuffle, args_opt.data_dir, args_opt.schema_dir, data_type=dataset_type) dataset_size = dataset.get_dataset_size() print('dataset size: ', dataset_size) print("dataset repeatcount: ", dataset.get_repeat_count()) if args_opt.enable_data_sink == "true": repeat_count = args_opt.epoch_size * dataset_size // args_opt.data_sink_steps time_monitor_steps = args_opt.data_sink_steps else: repeat_count = args_opt.epoch_size time_monitor_steps = dataset_size lr_schedule = BertLearningRate( learning_rate=common_cfg.AdamWeightDecay.learning_rate, end_learning_rate=common_cfg.AdamWeightDecay.end_learning_rate, warmup_steps=int(dataset_size * args_opt.epoch_size / 10), decay_steps=int(dataset_size * args_opt.epoch_size), power=common_cfg.AdamWeightDecay.power) params = netwithloss.trainable_params() decay_params = list(filter(common_cfg.AdamWeightDecay.decay_filter, params)) other_params = list( filter(lambda x: not common_cfg.AdamWeightDecay.decay_filter(x), params)) group_params = [{ 'params': decay_params, 'weight_decay': common_cfg.AdamWeightDecay.weight_decay }, { 'params': other_params, 'weight_decay': 0.0 }, { 'order_params': params }] optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=common_cfg.AdamWeightDecay.eps) callback = [ TimeMonitor(time_monitor_steps), LossCallBack(), ModelSaveCkpt(netwithloss.bert, args_opt.save_ckpt_step, args_opt.max_ckpt_num, save_ckpt_dir) ] if enable_loss_scale: update_cell = DynamicLossScaleUpdateCell( loss_scale_value=common_cfg.loss_scale_value, scale_factor=common_cfg.scale_factor, scale_window=common_cfg.scale_window) netwithgrads = BertTrainWithLossScaleCell( netwithloss, optimizer=optimizer, scale_update_cell=update_cell) else: netwithgrads = BertTrainCell(netwithloss, optimizer=optimizer) model = Model(netwithgrads) model.train(repeat_count, dataset, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == "true"), sink_size=args_opt.data_sink_steps)
def run_general_distill(): """ run general distill """ args_opt = get_argument() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, reserve_class_name_in_scope=False) if args_opt.device_target == "Ascend": context.set_context(device_id=args_opt.device_id) save_ckpt_dir = os.path.join( args_opt.save_ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) if args_opt.distribute == "true": if args_opt.device_target == 'Ascend': D.init() device_num = args_opt.device_num rank = args_opt.device_id % device_num else: D.init() device_num = D.get_group_size() rank = D.get_rank() save_ckpt_dir = save_ckpt_dir + '_ckpt_' + str(rank) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, device_num=device_num) else: rank = 0 device_num = 1 if not os.path.exists(save_ckpt_dir): os.makedirs(save_ckpt_dir) enable_loss_scale = True if args_opt.device_target == "GPU": if bert_student_net_cfg.compute_type != mstype.float32: logger.warning( 'Compute about the student only support float32 temporarily, run with float32.' ) bert_student_net_cfg.compute_type = mstype.float32 # Backward of the network are calculated using fp32, # and the loss scale is not necessary enable_loss_scale = False if args_opt.device_target == "CPU": logger.warning( 'CPU only support float32 temporarily, run with float32.') bert_teacher_net_cfg.dtype = mstype.float32 bert_teacher_net_cfg.compute_type = mstype.float32 bert_student_net_cfg.dtype = mstype.float32 bert_student_net_cfg.compute_type = mstype.float32 enable_loss_scale = False netwithloss = BertNetworkWithLoss_gd( teacher_config=bert_teacher_net_cfg, teacher_ckpt=args_opt.load_teacher_ckpt_path, student_config=bert_student_net_cfg, is_training=True, use_one_hot_embeddings=False) if args_opt.dataset_type == "tfrecord": dataset_type = DataType.TFRECORD elif args_opt.dataset_type == "mindrecord": dataset_type = DataType.MINDRECORD else: raise Exception("dataset format is not supported yet") dataset = create_tinybert_dataset('gd', common_cfg.batch_size, device_num, rank, args_opt.do_shuffle, args_opt.data_dir, args_opt.schema_dir, data_type=dataset_type) dataset_size = dataset.get_dataset_size() print('dataset size: ', dataset_size) print("dataset repeatcount: ", dataset.get_repeat_count()) if args_opt.enable_data_sink == "true": repeat_count = args_opt.epoch_size * dataset_size // args_opt.data_sink_steps time_monitor_steps = args_opt.data_sink_steps else: repeat_count = args_opt.epoch_size time_monitor_steps = dataset_size lr_schedule = BertLearningRate( learning_rate=common_cfg.AdamWeightDecay.learning_rate, end_learning_rate=common_cfg.AdamWeightDecay.end_learning_rate, warmup_steps=int(dataset_size * args_opt.epoch_size / 10), decay_steps=int(dataset_size * args_opt.epoch_size), power=common_cfg.AdamWeightDecay.power) params = netwithloss.trainable_params() decay_params = list(filter(common_cfg.AdamWeightDecay.decay_filter, params)) other_params = list( filter(lambda x: not common_cfg.AdamWeightDecay.decay_filter(x), params)) group_params = [{ 'params': decay_params, 'weight_decay': common_cfg.AdamWeightDecay.weight_decay }, { 'params': other_params, 'weight_decay': 0.0 }, { 'order_params': params }] optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=common_cfg.AdamWeightDecay.eps) callback = [ TimeMonitor(time_monitor_steps), LossCallBack(), ModelSaveCkpt(netwithloss.bert, args_opt.save_ckpt_step, args_opt.max_ckpt_num, save_ckpt_dir) ] if enable_loss_scale: update_cell = DynamicLossScaleUpdateCell( loss_scale_value=common_cfg.loss_scale_value, scale_factor=common_cfg.scale_factor, scale_window=common_cfg.scale_window) netwithgrads = BertTrainWithLossScaleCell( netwithloss, optimizer=optimizer, scale_update_cell=update_cell) else: netwithgrads = BertTrainCell(netwithloss, optimizer=optimizer) model = Model(netwithgrads) model.train(repeat_count, dataset, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == "true"), sink_size=args_opt.data_sink_steps)
def run_task_distill(args_opt): """ run task distill """ task = task_cfg[args_opt.task_name] teacher_net_cfg.seq_length = task.seq_length student_net_cfg.seq_length = task.seq_length train_cfg.batch_size = args_opt.train_batch_size eval_cfg.batch_size = args_opt.eval_batch_size teacher_ckpt = os.path.join(args_opt.teacher_model_dir, args_opt.task_name, WEIGHTS_NAME) student_ckpt = os.path.join(args_opt.student_model_dir, args_opt.task_name, WEIGHTS_NAME) train_data_dir = os.path.join(args_opt.data_dir, args_opt.task_name, TRAIN_DATA_NAME) eval_data_dir = os.path.join(args_opt.data_dir, args_opt.task_name, EVAL_DATA_NAME) save_ckpt_dir = os.path.join(args_opt.output_dir, args_opt.task_name) context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args.device_id) rank = 0 device_num = 1 train_dataset = create_dataset(batch_size=train_cfg.batch_size, device_num=device_num, rank=rank, do_shuffle=args_opt.do_shuffle, data_dir=train_data_dir, data_type=args_opt.dataset_type, seq_length=task.seq_length, task_type=task.task_type, drop_remainder=True) dataset_size = train_dataset.get_dataset_size() print('train dataset size:', dataset_size) eval_dataset = create_dataset(batch_size=eval_cfg.batch_size, device_num=device_num, rank=rank, do_shuffle=args_opt.do_shuffle, data_dir=eval_data_dir, data_type=args_opt.dataset_type, seq_length=task.seq_length, task_type=task.task_type, drop_remainder=False) print('eval dataset size:', eval_dataset.get_dataset_size()) if args_opt.enable_data_sink == 'true': repeat_count = args_opt.epoch_size * dataset_size // args_opt.data_sink_steps else: repeat_count = args_opt.epoch_size netwithloss = BertNetworkWithLoss(teacher_config=teacher_net_cfg, teacher_ckpt=teacher_ckpt, student_config=student_net_cfg, student_ckpt=student_ckpt, is_training=True, task_type=task.task_type, num_labels=task.num_labels) params = netwithloss.trainable_params() optimizer_cfg = train_cfg.optimizer_cfg lr_schedule = BertLearningRate( learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate, end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate, warmup_steps=int(dataset_size * args_opt.epoch_size * optimizer_cfg.AdamWeightDecay.warmup_ratio), decay_steps=int(dataset_size * args_opt.epoch_size), power=optimizer_cfg.AdamWeightDecay.power) decay_params = list( filter(optimizer_cfg.AdamWeightDecay.decay_filter, params)) other_params = list( filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params)) group_params = [{ 'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay }, { 'params': other_params, 'weight_decay': 0.0 }, { 'order_params': params }] optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps) netwithgrads = BertTrainCell(netwithloss, optimizer=optimizer) if args_opt.do_eval == 'true': eval_dataset = list(eval_dataset.create_dict_iterator()) callback = [ EvalCallBack(network=netwithloss.bert, dataset=eval_dataset, eval_ckpt_step=args_opt.eval_ckpt_step, save_ckpt_dir=save_ckpt_dir, embedding_bits=student_net_cfg.embedding_bits, weight_bits=student_net_cfg.weight_bits, clip_value=student_net_cfg.weight_clip_value, metrics=task.metrics) ] else: callback = [ StepCallBack(), ModelSaveCkpt(network=netwithloss.bert, save_ckpt_step=args_opt.save_ckpt_step, max_ckpt_num=args_opt.max_ckpt_num, output_dir=save_ckpt_dir, embedding_bits=student_net_cfg.embedding_bits, weight_bits=student_net_cfg.weight_bits, clip_value=student_net_cfg.weight_clip_value) ] model = Model(netwithgrads) model.train(repeat_count, train_dataset, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == 'true'), sink_size=args_opt.data_sink_steps)