Example #1
0
 def bayesMargDistSCPP(self):
     """
     Return a MargDistSCPP with distribution
     according to dirichlet formulation where alpha = [1 ... 1] 
     """
     tempDist = []
     for c in self.counts:
         tempDist.append( (numpy.atleast_1d((1 + c)/(len(c) + numpy.sum(c))), 
                       numpy.atleast_1d(self.binEdges)) )
         
     return margDistSCPP(tempDist)
Example #2
0
def yw2SCPP(**kwargs):
    oDir = kwargs.get('oDir')
    if not oDir:
        raise ValueError("Must provide oDir")
    oDir = os.path.realpath(oDir)
    
    agentType = kwargs.get('agentType')
    nAgents   = kwargs.get('nAgents',8)
    m         = kwargs.get('m', 5)
    L         = kwargs.get('L',100)
    d         = kwargs.get('d', 0.01)
    g         = kwargs.get('g', 1000000)
    minPrice  = kwargs.get('minPrice',0)
    maxPrice  = kwargs.get('maxPrice',50)
    serial    = kwargs.get('serial', False)
    dampen    = kwargs.get('dampen', True)
    nProc     = kwargs.get('nProc', multiprocessing.cpu_count() - 1)
    verbose   = kwargs.get('verbose',True)
    pltItr    = kwargs.get('pltItr', True)
    
    if verbose:
        print'Computing Symmetric Self Confirming Point Price Prediction.'
        
        print'Agent Type                   = {0}'.format(agentType)
        
        print 'Termination Threshold (d)    = {0}'.format(d)
        
        print'Number of Iterations        = {0}'.format(L)
        
        print'Number of Games             = {0}'.format(g)
        
        print'Number of Items per Auction = {0}'.format(m)
        
        print 'Using Dampining             = {0}'.format(dampen)
        
        if serial:
            print 'Using serial implementation'
        else:
            print'Number of Parallel Cores    = {0}'.format(nProc)
    
    
    if not serial:
        nGamesList = [g/nProc]*nProc
        nGamesList[-1] += (g%nProc)
    
    #initial uniform distribution
    tempDist = []
    p = float(1)/round(maxPrice - minPrice)
    a = [p]*(maxPrice - minPrice)
#    binEdges = [bin for bin in xrange( int(minPrice - maxPrice)+1 ) ]
    binEdges = numpy.arange(minPrice,maxPrice+1,1)
    for i in xrange(m):
        tempDist.append((numpy.atleast_1d(a),numpy.atleast_1d(binEdges)))
        
    currentDist = margDistSCPP(tempDist)
    
    #clean up
    # keep the binEdges for later histograms
    del p,a,tempDist
    
    ksList = []
    klList = []
    for t in xrange(0,L):
        
        if pltItr:
            cs = cs = ['y--p', 'm-*', 'r-o','y-^','y-*']
            graphname = os.path.join(oDir,'ywSCPP_itr_{0}.png'.format(t))
            if not ksList:
                title = "yw2SCPP, {0}, \n itr = {1}".format(agentType,t)
            else:
                title = "ywSCPP, {0} \n kld = {1}, ks = {2} \nitr = {3}".format(agentType,klList[-1],ksList[-1],t)
            currentDist.graphPdfToFile(fname = graphname,
                                       colorStyles = cs,
                                       title = title)
        
        if verbose:
            print ""
            print 'Iteration = {0}'.format(t)
            
        if dampen:
            kappa = float(L - t) / L
        else:
            kappa = 1
            
        if serial:
            result = numpy.zeros(g,m)
            for i in xrange(g):
                result[i,:] = simulateAuction(agentType = agentType, nAgents = nAgents, margDist = currentDist) 
                
        else:
            tasks = multiprocessing.JoinableQueue()
            
            results = multiprocessing.Queue()
            
            consumers = [Consumer(tasks,results) for i in xrange(nProc)]
            
            #start the consumers
            [w.start() for w in consumers]
                     
            [tasks.put( yw2Task(agentType = agentType, nAgents = nAgents, margDist = currentDist, nGames = nGames) ) for nGames in nGamesList]
            
            [tasks.put(None) for i in xrange(nProc)]
            
            if verbose:
                start = time.time()
                print "Waiting for {0} game simulation Simulation...".format(g)
                
            tasks.join()
            
            if verbose:
                print ""
                print "Finished {0} simulations in {1} seconds.".format(g,time.time()-start)
            
            if verbose:
                print ""
                print "Collecting Results"
                start = time.time()
             
            
            
               
            rList = []
            while not results.empty():
                rList.append(results.get())
                
            result = numpy.vstack(rList)
            
            if verbose:
                print ""
                print "Done collecting results in {0} seconds".format(time.time() - start)
                
            [w.terminate() for w in consumers]
            del results,tasks,consumers
        
            
        histData = [] 
        histCount = []
        for m in xrange(result.shape[1]):
            histData.append(numpy.histogram(result[:,m],binEdges,density=True))
#            histCount.append(numpy.histogram(result[:,m],binEdges,density=False))
            
        newDist = margDistSCPP(histData)  
        ksList.append(ksStat(currentDist, newDist))
        klList.append(klDiv(currentDist, newDist))
        
        if ksList[-1] < d or t == (L-1):
            
            postfix = '{0}_{1}_{2}_{3}_{4}_{5}'.format(agentType, g, m, d,minPrice,maxPrice)
            pklName = 'distPricePrediction_' + postfix + '.pkl'
            txtName = 'distPricePrediction_' + postfix + '.txt'
            
            pricePredictionPklFilename = os.path.join(oDir, pklName) 
                                                      
            currentDist.savePickle(pricePredictionPklFilename)
            
            pricePredictionTxtFilename = os.path.join(oDir, txtName)
            
            #this section could be improved....
            testdata = []
            for m in xrange(currentDist.m):
                if m == 0:
                    textdata = numpy.vstack([currentDist.data[m][0],currentDist.data[m][1][:-1]])
                else:
                    textdata = numpy.vstack([textdata, numpy.vstack([currentDist.data[m][0],currentDist.data[m][1][:-1]])])
                    
            numpy.savetxt(pricePredictionTxtFilename,textdata)
            
            print ''
            print'Terminated after {0} Iterations'.format(t)
            print'Final Expected Price Vector = {0}'.format(currentDist.expectedPrices())
            
            ksListName = os.path.join(oDir,'ksList.json')
            with open(ksListName,'w') as f:
                json.dump(ksList,f)
            klListName = os.path.join(oDir,'klList.json')
            with open(klListName,'w') as f:
                json.dump(klList,f)
            
            break
        else:
            
            currentDist = updateDist(currentDist, newDist, kappa)
            del result, newDist
Example #3
0
def yw2Hob(**kwargs):
    oDir         = kwargs.get('oDir')
    if oDir == None:
        raise ValueError("Must specify oDir")
    if not os.path.exists(oDir):
        os.makedirs(oDir)
    
    agentType    = kwargs.get('agentType')
    if agentType == None:
        raise ValueError("Must specify agentType.")
    
    nAgents      = kwargs.get('nAgents',8)
    selfIdx      = kwargs.get('selfIdx',numpy.random.randint(nAgents))
    nGames       = kwargs.get('nGames',100)
    m            = kwargs.get('m',5)
    minPrice     = int(kwargs.get('minPrice',0))
    maxPrice     = int(kwargs.get('maxPrice',50))
    
    minValuation = kwargs.get('minValuation',0)
    maxValuation = kwargs.get('maxValuation',50)
    
    maxItr       = kwargs.get('maxItr', 100)
    tol          = kwargs.get('tol', 0.01)
    dampen       = kwargs.get('dampen', True)
    
    parallel     = kwargs.get('parallel',False)
    nProc        = kwargs.get('nProc',multiprocessing.cpu_count()-1)
    

    savePkl      = kwargs.get('savePkl',True)
    saveTime     = kwargs.get('saveTime',True)
    pltMarg      = kwargs.get('pltMarg',True)    
    pltKld       = kwargs.get('pltKld',True)
    pltKs        = kwargs.get('pltKs',True)
    verbose      = kwargs.get('verbose',True)
    
    if verbose:
        print 'oDir         = {0}'.format(oDir)
        print 'agentType    = {0}'.format(agentType)
        print 'nAgents      = {0}'.format(nAgents)
        print 'nGames       = {0}'.format(nGames)
        print 'm            = {0}'.format(m)
        print 'minPrice     = {0}'.format(minPrice)
        print 'maxPrice     = {0}'.format(maxPrice)
        print 'minValuation = {0}'.format(minValuation)
        print 'maxValuation = {0}'.format(maxValuation)
        print 'selfIdx      = {0}'.format(selfIdx)
        
        print 'maxItr       = {0}'.format(maxItr)
        print 'tol          = {0}'.format(tol)
        
        print 'parallel     = {0}'.format(parallel)
        print 'nProc        = {0}'.format(nProc)
    
        print 'savePkl      = {0}'.format(savePkl)
        print 'saveTime     = {0}'.format(saveTime)
        print 'pltMarg      = {0}'.format(pltMarg)
        print 'pltKld       = {0}'.format(pltKld)
        print 'pltKs        = {0}'.format(pltKs)
    
    if savePkl:
        pklDir = os.path.join(oDir, 'gmmPkl')
        if not os.path.exists(pklDir):
            os.makedirs(pklDir)
        else:
            [os.remove(f) for f in glob.glob(os.path.join(pklDir,'*.pkl'))]
            
    if pltMarg:
        margDir = os.path.join(oDir,'pltMarg')
        if not os.path.exists(margDir):
            os.makedirs(margDir)
        else:
            [os.remove(f) for f in glob.glob(os.path.join(margDir,'*.png'))]
            [os.remove(f) for f in glob.glob(os.path.join(margDir,'*.pdf'))]
            
    if saveTime:
        timeFile = os.path.join(oDir,'time.txt')
        if os.path.exists(timeFile):
            os.remove(timeFile)   
            
    klFile = os.path.join(oDir,'kld.txt')
    if os.path.exists(klFile):
        os.remove(klFile)
        
    ksFile = os.path.join(oDir,'ks.txt')
    if os.path.exists(ksFile):
        os.remove(ksFile)   
            
    #initial uniform distribution
    tempDist = []
    p = float(1)/round(maxPrice - minPrice)
    a = [p]*(maxPrice - minPrice)
    binEdges = numpy.arange(minPrice,maxPrice+1,1)
    for i in xrange(m):
        tempDist.append((numpy.atleast_1d(a),numpy.atleast_1d(binEdges)))
        
    currentDist = margDistSCPP(tempDist)
    
    del tempDist, p, a 
    
    if pltMarg:
        of = os.path.join(margDir,'yw2SccpHob_{0}_m{1}_n{2}_init.pdf'.format(agentType,m,nAgents))
        title = 'Marginal SCPP {0}'.format(agentType)
        xlabel = r'$q$'
        ylabel = r'$p(q)$'
        currentDist.graphPdfToFile(fname = of, title = title,  xlabel = xlabel, ylabel = ylabel)
        
    klList = []
    ksList = []
    for t in xrange(maxItr):
        if verbose:
            print ''
            print 'Iteration = {0}'.format(t)
            
        if dampen:
            kappa = numpy.float(maxItr - t) / maxItr
        else:
            kappa = 1
            
        if verbose:
            print 'kappa = {0}'.format(kappa)
            
        if verbose or saveTime:
            start = time.time()
            
        hob = simulateAuction( agentType       = agentType,
                               pricePrediction = currentDist,
                               m               = m,
                               nAgents         = nAgents,
                               nGames          = nGames,
                               parallel        = parallel,
                               nProc           = nProc,
                               minValuation    = minValuation,
                               maxValuation    = maxValuation,
                               retType         = 'hob',
                               selfIdx         = selfIdx,
                               verbose         = verbose)
        
        if verbose or saveTime:
            end = time.time()
            
        if verbose:
            print 'Simulated {0} auctions with {1} {2} agents in {3} seconds.'.format(nGames, nAgents, agentType, end-start)

        if savePkl:
            pklFile = os.path.join(pklDir, 'yw2ScppHob_{0}_m{1}_n{2}_{3:05d}.pkl'.format(agentType,m,nAgents,t))
            with open(pklFile,'wb') as f:
                pickle.dump(currentDist,f) 
                
        histData = []
        for goodIdx in xrange(hob.shape[1]):
            histData.append(numpy.histogram(hob[:,goodIdx],binEdges,density=True))
            
        newDist = margDistSCPP(histData)
        
        klList.append( klDiv(currentDist, newDist) )
        
        if verbose:
            print 'kld = {0}'.format(klList[-1])
            
        with open(klFile,'a') as f:
            f.write("{0}\n".format(klList[-1]))
        
        ksList.append( ksStat(currentDist,newDist) )
        
        if verbose:
            print 'kls = {0}'.format(ksList[-1])
            
        with open(ksFile,'a') as f:
            f.write("{0}\n".format(ksList[-1]))
        
        if saveTime:
            with open(timeFile,'a') as f:
                f.write("{0}\n".format(end-start))
                
        if pltMarg:
            of = os.path.join(margDir,'yw2SccpHob_{0}_m{1}_n{2}_{3:05d}.pdf'.format(agentType,m,nAgents,t))
            if verbose:
                print 'Plotting Marginal pdf to {0}'.format(of)
            title = 'Marginal SCPP {0}'.format(agentType)
            xlabel = r'$q$'
            ylabel = r'$p(q)$'
            newDist.graphPdfToFile(fname = of, title = title, xlabel = xlabel, ylabel = ylabel)
                
        if klList[-1] < tol or t == (maxItr - 1):
            
            if verbose:
                print 'TERMINATED:'
                if klList[-1] < tol:
                    print '\tkld = {0} < tol = {1}'.format(klList[-1],tol)
                else:
                     
                    print '\tt = {0}, maxItr = {1}'.format(t,maxItr)
                
            if pltKld:
                
                if verbose:
                    print 'Plotting K-L Divergence vs. Iteration.'
                    
                klPdf = os.path.join(oDir,'kld.pdf')
                plt.figure()
                plt.plot(range(len(klList)), klList)
                plt.xlim((0,maxItr))
                plt.ylabel('K-L Divergence')
                plt.xlabel('Iteration')
                plt.title('Marginal SCPP {0}'.format(agentType))
                plt.savefig(klPdf)
                plt.close()
            
            if pltKs:
                
                if verbose:
                    print 'Plotting K-S Stat vs. Iteration'
                
                ksPdf = os.path.join(oDir,'ks.pdf')
                plt.figure()
                plt.plot(range(len(ksList)), ksList)
                plt.xlim((0,maxItr))
                plt.ylabel('K-S Statistic')
                plt.xlabel('Iteration')
                plt.title('Marginal SCPP {0}'.format(agentType))
                plt.savefig(ksPdf)
                plt.close()
                
            
            if verbose:
                print 'DONE!!!!!'
            
            break
        else:
            if verbose:
                print 'Updating distribution.'
            currentDist = updateDist(currentDist,newDist,kappa)
            del hob, newDist
              
Example #4
0
        
        
if __name__ == "__main__":
    oDir = "C:/auctionResearch/experiments/yw2/debug"
    agentType = "targetMU8"
    minPrice  = 0
    maxPrice  = 50
    m         = 5
    L         = 100
    d         = 0.01
    g         = 5
    tempDist = []
    p = float(1)/round(maxPrice - minPrice)
    a = [p]*(maxPrice - minPrice)
#    binEdges = [bin for bin in xrange( int(minPrice - maxPrice)+1 ) ]
    binEdges = numpy.arange(minPrice,maxPrice+1,1)
    for i in xrange(m):
        tempDist.append((numpy.atleast_1d(a),numpy.atleast_1d(binEdges)))
    
    margDist = margDistSCPP(tempDist)
    
    task = yw2Task(agentType = "straightMU8", nAgents = 8, margDist = margDist, nGames = 1)
        
    winningBids = task()

#    yw2SCPP(oDir = oDir, agentType = agentType, minPrice = minPrice, maxPrice = maxPrice, m = m, L = L, d = d, g = g)
    
    pass    
             
        
Example #5
0
    
    agentTypeList = ["straightMU8"]*8
    selfIdx = 0
    nGames = 20
    parallel = False
    m=5
    
    tempDist = []
    p = float(1)/round(maxPrice - minPrice)
    a = [p]*(maxPrice - minPrice)
#    binEdges = [bin for bin in xrange( int(minPrice - maxPrice)+1 ) ]
    binEdges = numpy.arange(minPrice,maxPrice+1,1)
    for i in xrange(m):
        tempDist.append((numpy.atleast_1d(a),numpy.atleast_1d(binEdges)))
        
    pricePrediction = margDistSCPP(tempDist)
    
    print hobSim(pricePrediction = pricePrediction,
                 agentTypeList = agentTypeList,
                 selfIdx = selfIdx,
                 nGames = nGames,
                 parallel = parallel,
                 m=m)