def TestDatasets3(): print('[INFO] -------------------------------------------------') print('[INFO] set datasets') _, test_lips, _, test_tongue, _, test_label = load_dataset() test_lips = test_lips[800:1200+i-1,:,:,:] test_tongue = test_tongue[800:1200+i-1,:,:,:] test_label = test_label[800:1200,:] # print(test_lips.shape, test_tongue.shape, test_label.shape) # #preprocessing test_lips = match_image_label(test_lips) test_tongue = match_image_label(test_tongue) #to torch.tensor test_lips = torch.from_numpy(test_lips).float() test_tongue = torch.from_numpy(test_tongue).float() test_label = torch.from_numpy(test_label).float() #change dimension (x,64,64,1) --> (x,1,64,64) test_lips = test_lips.permute(0,3,1,2) test_tongue = test_tongue.permute(0,3,1,2) #两通道 test_datasets3 = TensorDataset(test_lips, test_tongue, test_label) test_loader3 = DataLoader(dataset=test_datasets3, batch_size=BATCH_SIZE, shuffle=False) return test_datasets3, test_loader3
def TestDatasets2(): print('[INFO] -------------------------------------------------') print('[INFO] set datasets') # _, test_lips, _, test_tongue, _, test_label = load_dataset() test_lips = np.load('../data/new_database/ssnv_train_lips.npy') test_tongue = np.load('../data/new_database/ssnv_train_tongue.npy') test_lips = test_lips[400:800+i-1,:,:,:] test_tongue = test_tongue[400:800+i-1,:,:,:] # #preprocessing test_lips = match_image_label(test_lips) test_tongue = match_image_label(test_tongue) #to torch.tensor test_lips = torch.from_numpy(test_lips).float() test_tongue = torch.from_numpy(test_tongue).float() #change dimension (x,64,64,1) --> (x,1,64,64) test_lips = test_lips.permute(0,3,1,2) test_tongue = test_tongue.permute(0,3,1,2) #两通道 test_datasets2 = TensorDataset(test_lips, test_tongue) test_loader2 = DataLoader(dataset=test_datasets2, batch_size=BATCH_SIZE, shuffle=False) return test_datasets2, test_loader2