def do_first_em_cycle(pars_init, obs_scheme, y, u=None, eps=1e-30, use_A_flag=True,use_B_flag=False,diag_R_flag=True): """ INPUT: pars: collection of initial parameters for LDS obs_scheme: observation scheme for given data, stored in dictionary with keys 'sub_pops', 'obs_time', 'obs_pops' y: data array of observed variables u: data array of input variables eps: precision (stopping criterion) for deciding on convergence of latent covariance estimates durgin the E-step This function serves to quickly get the results of one EM-cycle. It is mostly intended to generate results that can quickly be compared with other EM implementations or different parameter initialisation methods. """ y_dim = y.shape[0] u_dim = ssm_fit._get_u_dim(u) t_tot = y.shape[1] pars_init = dict(pars_init) ssm_fit.check_pars(pars=pars_init, y_dim=y_dim, u_dim=u_dim) obs_scheme = dict(obs_scheme) ssm_fit.check_obs_scheme(obs_scheme=obs_scheme, y_dim=y_dim, t_tot=t_tot) # do one E-step stats_init, ll_init, t_conv_ft, t_conv_sm = \ ssm_fit.lds_e_step(pars=pars_init, y=y, u=u, obs_scheme=obs_scheme, eps=eps) # do one M-step pars_first = ssm_fit.lds_m_step(stats=stats_init, y=y, u=u, obs_scheme=obs_scheme, use_A_flag=use_A_flag, use_B_flag=use_B_flag, diag_R_flag=diag_R_flag) # do another E-step stats_first, ll_first, t_conv_ft, t_conv_sm = \ ssm_fit.lds_e_step(pars=pars_first, y=y, u=u, obs_scheme=obs_scheme, eps=eps) return stats_init, ll_init, pars_first, stats_first, ll_first
def run(x_dim, y_dim, u_dim, t_tot, obs_scheme=None, max_iter=10, epsilon=np.log(1.001), eps_cov=0, plot_flag=False, trace_pars_flag=False, trace_stats_flag=False, diag_R_flag=True, use_A_flag=True, use_B_flag=False, pars_true=None, gen_A_true='diagonal', lts_true=None, gen_B_true='random', gen_Q_true='identity', gen_mu0_true='random', gen_V0_true='identity', gen_C_true='random', gen_d_true='scaled', gen_R_true='fraction', pars_init=None, gen_A_init='diagonal', lts_init=None, gen_B_init='random', gen_Q_init='identity', gen_mu0_init='random', gen_V0_init='identity', gen_C_init='random', gen_d_init='mean', gen_R_init='fractionObserved', u=None, input_type='pwconst',const_input_length=1, y=None, x=None, interm_store_flag = False, save_file='LDS_data.mat'): """ INPUT: x_dim : dimensionality of latent states x y_dim : dimensionality of observed states y u_dim : dimensionality of input states u t_tot : trial length (in number of time points) obs_scheme: observation scheme for given data, stored in dictionary with keys 'sub_pops', 'obs_time', 'obs_pops' max_iter: maximum number of allowed EM steps epsilon: precision (stopping criterion) for deciding on convergence of overall EM algorithm eps_cov: precision (stopping criterion) for deciding on convergence of latent covariance estimates durgin the E-step plot_flag : boolean specifying if to visualise fitting progress` trace_pars_flag: boolean, specifying if entire parameter updates history or only the current state is kept track of trace_stats_flag: boolean, specifying if entire history of inferred latents or only the current state is kept track of diag_R_flag : boolean specifying if R is represented as diagonal use_A_flag : boolean specifying whether to fit the LDS with parameter A use_B_flag : boolean specifying whether to fit the LDS with parameter B pars_true : None, or list/np.ndarray/dict containing no, some or all of the desired ground-truth parameters. Will identify any parameters not handed over and will fill in the rest according to selected strings below. gen_A_true : string specifying methods of parameter generation lts_true : ndarray with one entry per latent time scale (i.e. x_dim) gen_B_true : string specifying methods of parameter generation gen_Q_true : "" gen_mu0_true : "" gen_C_true : "" gen_V0_true : "" gen_d_true : "" gen_R_true : (see below for details) pars_init : None, or list/np.ndarray/dict containing no, some or all of the desired parameter initialisations. Will identify any parameters not handed over and will fill in the rest according to selected strings below. gen_A_init : string specifying methods of parameter initialisation lts_init : ndarray with one entry per latent time scale (i.e. x_dim) gen_B_init : string specifying methods of parameter initialisation gen_Q_init : "" gen_mu0_init : "" gen_V0_init : "" gen_C_init : "" gen_d_init : "" gen_R_init : (see below for details) x: data array of latent variables y: data array of observed variables u: data array of input variables interm_store_flag : boolean, specifying whether or not to store the intermediate results after each EM cycle to the same folder as given by input variable save_file save_file : (path to folder and) name of file for storing results. Generates parameters of an LDS, potentially by looking at given data. Can be used for for generating ground-truth parameters for generating data from an artificial experiment using the LDS, or for finding parameter initialisations for fitting an LDS to data. Usage is slightly different in the two cases (see below). By nature of the wide range of applicability of the LDS model, this function contains many options (implemented as strings differing different cases, and arrays giving user-specified values such as timescale ranges), and is to be extended even further in the future. """ if not isinstance(use_B_flag,bool): raise Exception('use_B_flag has to be a boolean. However, it is', use_B_flag) if not isinstance(use_A_flag,bool): raise Exception('use_A_flag has to be a boolean. However, it is', use_A_flag) if not isinstance(diag_R_flag,bool): raise Exception('diag_R_flag has to be a boolean. However, it is ', diag_R_flag) if not isinstance(interm_store_flag,bool): raise Exception(('interm_store_flag has to be a boolean' 'However, it is '), interm_store_flag) obs_scheme = ssm_fit.check_obs_scheme(obs_scheme=obs_scheme, y_dim=y_dim, t_tot=t_tot) if y is None: if lts_true is None: lts_true = np.linspace(0.9,0.98,x_dim) pars_true, pars_options_true = gen_pars( x_dim=x_dim, y_dim=y_dim, u_dim=u_dim, pars_in=pars_true, obs_scheme=obs_scheme, gen_A=gen_A_true, lts=lts_true, gen_B=gen_B_true, gen_Q=gen_Q_true, gen_mu0=gen_mu0_true, gen_V0=gen_V0_true, gen_C=gen_C_true, gen_d=gen_d_true, gen_R=gen_R_true) n_tr = 1 # fix to always just one repetition for now # generate data from model print('generating data from model with ground-truth parameters') x,y,u = sim_data(pars=pars_true, t_tot=t_tot, n_tr=n_tr, obs_scheme=obs_scheme, u=u, input_type=input_type, const_input_length=const_input_length) Pi = sp.linalg.solve_discrete_lyapunov(pars_true['A'], pars_true['Q']) Pi_t = np.dot(pars_true['A'].transpose(), Pi) stats_true, lltr, t_conv_ft, t_conv_sm = \ do_e_step(pars=pars_true, y=y, u=u, obs_scheme=obs_scheme, eps=eps_cov) else: # i.e. if data provided pars_true = {} pars_true['A'] = 0 pars_true['B'] = 0 pars_true['Q'] = 0 pars_true['mu0'] = 0 pars_true['V0'] = 0 pars_true['C'] = 0 pars_true['d'] = 0 pars_true['R'] = 0 Pi = 0 Pi_t = 0 ext_true = 0 extxt_true = 0 extxtm1_true = 0 lltr = 0 # get initial parameters if not use_A_flag: # overwrites any other parameter choices for A! Set A = 0 if isinstance(pars_init, dict) and ('A' in pars_init): pars_init['A'] = np.zeros((x_dim,x_dim)) elif (isinstance(pars_init,(list,np.ndarray)) and not pars_init[0] is None): iniPars[0] = np.zeros((x_dim,x_dim)) elif not gen_A_init == 'zero': print(('Warning: set flag use_A_flag=False, but did not set gen_A_init ' 'to zero. Will overwrite gen_A_init to zero now.')) gen_A_init = 'zero' if not use_B_flag: # overwrites any other parameter choices for B! Set B = 0 if isinstance(pars_init, dict) and ('B' in pars_init): pars_init['B'] = np.zeros((x_dim,u_dim)) elif (isinstance(pars_init,(list,np.ndarray)) and not pars_init[1] is None): iniPars[1] = np.zeros((x_dim,u_dim)) elif not gen_B_init == 'zero': print(('Warning: set flag ifBseA=False, but did not set gen_B_init ' 'to zero. Will overwrite gen_B_init to zero now.')) gen_B_init = 'zero' if lts_init is None: lts_init = np.random.uniform(size=[x_dim]) pars_init, pars_options_init = gen_pars( x_dim=x_dim, y_dim=y_dim, u_dim=u_dim, pars_in=pars_init, obs_scheme=obs_scheme, gen_A=gen_A_init, lts=lts_init, gen_B=gen_B_init, gen_Q=gen_Q_init, gen_mu0=gen_mu0_init, gen_V0=gen_V0_init, gen_C=gen_C_init, gen_d=gen_d_init, gen_R=gen_R_init, x=x, y=y, u=u) # check initial goodness of fit for initial parameters stats_init,ll_init,pars_first,stats_first,ll_first = do_first_em_cycle( pars_init=pars_init, obs_scheme=obs_scheme, y=y, u=u, eps=eps_cov, use_A_flag=use_A_flag, use_B_flag=use_B_flag, diag_R_flag=diag_R_flag) if interm_store_flag: save_file_interm = save_file else: save_file_interm = None fit_lds = setup_fit_lds(y=y, u=y, max_iter=max_iter, epsilon=epsilon, eps_cov=eps_cov, plot_flag=plot_flag, trace_pars_flag=trace_pars_flag, trace_stats_flag=trace_stats_flag, diag_R_flag=diag_R_flag, use_A_flag=use_A_flag, use_B_flag=use_B_flag) # fit the model to data print('fitting model to data') t = time.time() pars_hat,ll = fit_lds(x_dim=x_dim, pars=pars_init, obs_scheme=obs_scheme, save_file=save_file_interm) elapsed_time = time.time() - t print('elapsed time for fitting is') print(elapsed_time) stats_hat = ssm_fit._setup_stats(y, x_dim, u_dim) if use_B_flag: stats_hat, ll_hat, t_conv_ft, t_conv_sm = \ ssm_fit.lds_e_step(pars=pars_hat, y=y, u=u, obs_scheme=obs_scheme, eps=eps_cov) else: stats_hat, ll_hat, t_conv_ft, t_conv_sm = \ ssm_fit.lds_e_step(pars=pars_hat, y=y, u=None, obs_scheme=obs_scheme, eps=eps_cov) Pi_h = sp.linalg.solve_discrete_lyapunov(pars_hat['A'], pars_hat['Q']) Pi_t_h = np.dot(pars_hat['A'].transpose(), Pi_h) # save results for visualisation (with Matlab code) if u is None: u = 0 B_h = 0 B_hs = [0] if B_h is None: B_h = 0 B_hs = [0] save_file_m = {'x': x, 'y': y, 'u' : u, 'll' : ll, 'T' : t_tot, 'Trial':n_tr, 'elapsedTime' : elapsed_time, 'inputType' : input_type, 'constInputLngth' : const_input_length, 'ifUseB':use_B_flag, 'ifUseA':use_A_flag, 'epsilon':epsilon, 'ifPlotProgress':plot_flag, 'ifTraceParamHist':trace_pars_flag, 'ifTraceStatsHist':trace_stats_flag, 'ifRDiagonal':diag_R_flag, 'ifUseB':use_B_flag, 'covConvEps':eps_cov, 'truePars':pars_true, 'initPars':pars_init, 'firstPars':pars_first, 'estPars': pars_hat, 'stats_0': stats_init, 'stats_1': stats_first, 'stats_h': stats_hat, 'stats_true': stats_true, 'Pi':Pi,'Pi_h':Pi_h,'Pi_t':Pi_t,'Pi_t_h': Pi_t_h, 'obsScheme' : obs_scheme} savemat(save_file,save_file_m) # does the actual saving return y,x,u,pars_hat,pars_init,pars_true