def __init__(self, G):
     self._Gr = G
     self._coupleDistances = {}
     
     for v in self._Gr.getVertices():
         v_sssp = SSSP(self._Gr)
         v_sssp.run(v)
         self._coupleDistances[v] = v_sssp.getDistances()
    def getCommunities(self, k):
        """
        Returns a set of communities detected by removal of k edges with
        maximal betweenness centrality. 
        @Invariant: all([all([self._G.isVertex(v) for v in C]) for C in self.getCommunities()])
        """
        unDirectG = self.directToUndirectGraph(self._G)
        unDirectG = deepcopy(unDirectG)
        community_vertices = set()
        
        if k <=0:
            return [unDirectG.getVertices()]
        
        if k > len(unDirectG.getEdges()):
            ans = []
            for ver in unDirectG.getVertices():
                ans.append([ver])
            return ans
        
        for i in range(0,k):

            bweenS = EdgeBetweenness(unDirectG)
            bweenS.run()
            biggestEdgeBC = bweenS.getTheBiggestBC_Edges()
            
            
            if biggestEdgeBC is None:
                break
            
            unDirectG.deleteEdge(biggestEdgeBC)
            unDirectG.deleteEdge((biggestEdgeBC[1],biggestEdgeBC[0]))
            community_vertices.add(biggestEdgeBC[0])
            community_vertices.add(biggestEdgeBC[1])
        
        ans = []
        
        for v in community_vertices:
            v_community = []
            bfs_from_v = SSSP(unDirectG)
            bfs_from_v.run(v)
            
            for reachable_from_v in bfs_from_v._distances:
                if bfs_from_v._distances[reachable_from_v] >= 0:
                    v_community.append(reachable_from_v)
                    
            isExist = False
            for elm in ans:
                if elm == v_community:
                    isExist = True
                    break
            if isExist == False:
                ans.append(v_community)
        
                
                
                    
        return ans
Example #3
0
    g.addEdge((1, 4, 7))
    g.addEdge((4, 3, 6))
    g.addEdge((3, 2, -5))
    g.addEdge((1, 3, 1))
    g.addEdge((3, 0, 2))
    g.print()

    distance = fastDPAlgo(g)
    print("\nShortest path distances by BASIC DP ALGORITHM:")
    printMatrix(distance, g.v)

    distance = floydWarshall(g)
    print("\nShortest path distances by FLOYD-WARSHALL ALGORITHM:")
    printMatrix(distance, g.v)

    sparseGraph = SSSP()
    for i in range(5):
        sparseGraph.addVertex(i)
    sparseGraph.addDirectedEdge((0, 4, -4))
    sparseGraph.addDirectedEdge((0, 1, 3))
    sparseGraph.addDirectedEdge((2, 1, 4))
    sparseGraph.addDirectedEdge((0, 2, 8))
    sparseGraph.addDirectedEdge((1, 4, 7))
    sparseGraph.addDirectedEdge((4, 3, 6))
    sparseGraph.addDirectedEdge((3, 2, -5))
    sparseGraph.addDirectedEdge((1, 3, 1))
    sparseGraph.addDirectedEdge((3, 0, 2))

    distance = johnson(sparseGraph)
    print("\nShortest path distances by JOHNSON ALGORITHM:")
    printMatrix(distance, len(distance))