Example #1
0
def main():
    from cpld import Platform
    from stabilizer import Stabilizer

    p = Platform()
    s = Stabilizer(p)
    p.build(s, build_name="stabilizer", mode="cpld")
Example #2
0
def init_model(transform):
    global mark_detector, box_process, img_queue, box_queue, pose_estimator, pose_stabilizers, tm
    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()

    # img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    tm = cv2.TickMeter()
    return None, None
Example #3
0
class TestStabilizer(unittest.TestCase):
    def setUp(self):
        originalVideo = Video('/home/victorhugomoura/Documents/example.mp4')
        acceleratedVideo = Video(
            '/home/victorhugomoura/Documents/Folder With Spaces/example.avi')
        velocity = 10
        self.stabilizer = Stabilizer(originalVideo, acceleratedVideo, velocity)

    def testCorrectPath(self):
        original = self.stabilizer.originalVideo.file()
        expected = '"/home/victorhugomoura/Documents/example.mp4"'
        self.assertEqual(self.stabilizer.correctPath(original), expected)

        original = self.stabilizer.acceleratedVideo.file()
        expected = '"/home/victorhugomoura/Documents/Folder With Spaces/example.avi"'
        self.assertEqual(self.stabilizer.correctPath(original), expected)
Example #4
0
def gen3(camera):
    """Video streaming generator function."""
    mark_detector = None
    flag1 = True
    if mark_detector == None:
        mark_detector = MarkDetector()

        # Introduce pose estimator to solve pose. Get one frame to setup the
        # estimator according to the image size.
        # height, width = sample_frame.shape[:2]
        # pose_estimator = PoseEstimator(img_size=(height, width))

        # Introduce scalar stabilizers for pose.
        pose_stabilizers = [
            Stabilizer(state_num=2,
                       measure_num=1,
                       cov_process=0.1,
                       cov_measure=0.1) for _ in range(6)
        ]

    while True:

        frame, flag1 = camera.get_frame3(mark_detector, pose_stabilizers,
                                         flag1)
        # print (frame)
        yield (b'--frame\r\n'
               b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
Example #5
0
    def __init__(self,
                 frame,
                 EYE_AR_THRESH=0.3,
                 ROLL_THRESH=20,
                 TIME_THRESH=10):

        self.EYE_AR_THRESH = EYE_AR_THRESH
        self.ROLL_THRESH = ROLL_THRESH
        self.TIME_THRESH = TIME_THRESH
        self.ALARM_ON = False
        self.T = None

        self.faceDetector = FaceDetector()
        self.eyeDetector = EyeDetector()
        self.markDetector = MarkDetector(self.faceDetector)

        # Setup process and queues for multiprocessing.
        self.img_queue = Queue()
        self.box_queue = Queue()
        self.img_queue.put(frame)
        self.box_process = Process(target=self.get_face,
                                   args=(self.markDetector, ))
        self.box_process.start()

        h, w = frame.shape[:2]
        self.poseEstimator = PoseEstimator(img_size=(h, w))
        self.pose_stabilizers = [
            Stabilizer(state_num=2,
                       measure_num=1,
                       cov_process=0.1,
                       cov_measure=0.1) for _ in range(6)
        ]
Example #6
0
class TestStabilizer(unittest.TestCase):
    def setUp(self):
        originalVideo = Video('/home/victorhugomoura/Documents/example.mp4')
        acceleratedVideo = Video(
            '/home/victorhugomoura/Documents/out/example.mp4')
        self.stabilizer = Stabilizer(originalVideo, acceleratedVideo, '10')

    def testCheckParameters(self):
        self.stabilizer.checkParameters()

        self.stabilizer.originalVideo = Video(
            '/home/victorhugomoura/Documents/example.csv')
        self.assertRaises(InputError, self.stabilizer.checkParameters)

        self.setUp()
        self.stabilizer.acceleratedVideo = Video(
            '/home/victorhugomoura/Documents/out/example.csv')
        self.assertRaises(InputError, self.stabilizer.checkParameters)

        self.setUp()
        self.stabilizer.velocity = '1'
        self.assertRaises(InputError, self.stabilizer.checkParameters)
Example #7
0
    def __init__(self):
        print "OpenCV version: {}".format(cv2.__version__)
        self.CNN_INPUT_SIZE = 128

        self.mark_detector = MarkDetector()

        height = 480
        width = 640
        self.pose_estimator = PoseEstimator(img_size=(height, width))

        self.pose_stabilizers = [
            Stabilizer(state_num=2,
                       measure_num=1,
                       cov_process=0.1,
                       cov_measure=0.1) for _ in range(8)
        ]

        self.img_queue = Queue()
        self.box_queue = Queue()
        self.box_process = Process(target=self.get_face,
                                   args=(
                                       self.mark_detector,
                                       self.img_queue,
                                       self.box_queue,
                                   ))

        self.process_ctrl_flag = rospy.get_param("process_ctrl", True)
        self.process_ctrl_subscriber = rospy.Subscriber(
            "/head_pose_estimator/process_ctrl", Bool,
            self.process_ctrl_callback)

        self.sub_img_name = rospy.get_param("sub_img_name",
                                            "/usb_cam/image_raw")
        self.img_subscriber = rospy.Subscriber(self.sub_img_name, Image,
                                               self.img_callback)

        self.show_result_img_flag = rospy.get_param("show_result_img", True)
        self.show_axis_flag = rospy.get_param("show_axis", True)
        self.show_annotation_box_flag = rospy.get_param(
            "show_annotation_box", True)
        self.pub_result_img_flag = rospy.get_param("pub_result_img", True)

        self.img_publisher = rospy.Publisher(
            "/head_pose_estimator/result_image", Image, queue_size=10)

        self.result_publisher = rospy.Publisher(
            "/head_pose_estimator/head_pose", HeadPose, queue_size=10)

        self.box_process.start()
Example #8
0
def main():
    p = Platform()
    dut = Stabilizer(p)
    tb = TB(p, dut)
    run_simulation(tb, [tb.test()],
                   vcd_name="stabilizer.vcd",
                   clocks={
                       "sys": 8,
                       "sck1": 8,
                       "sck0": 8,
                       "le": 8
                   },
                   special_overrides={
                       Tristate: SimTristate,
                       Instance: SimInstance
                   })
Example #9
0
	def __init__(self):
		# Load the parameters
		self.conf = config()
		# initialize dlib's face detector (HOG-based) and then create the
		# facial landmark predictor
		print("[INFO] loading facial landmark predictor...")
		self.detector = dlib.get_frontal_face_detector()
		self.predictor = dlib.shape_predictor(self.conf.shape_predictor_path)
		
		# grab the indexes of the facial landmarks for the left and
		# right eye, respectively
		(self.lStart, self.lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
		(self.rStart, self.rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
		
		# initialize the video stream and sleep for a bit, allowing the
		# camera sensor to warm up
		self.cap = cv2.VideoCapture(0)
		if self.conf.vedio_path == 0:
			self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
		_, sample_frame = self.cap.read()
		
		# Introduce mark_detector to detect landmarks.
		self.mark_detector = MarkDetector()
		
		# Setup process and queues for multiprocessing.
		self.img_queue = Queue()
		self.box_queue = Queue()
		self.img_queue.put(sample_frame)
		self.box_process = Process(target=get_face, args=(
			self.mark_detector, self.img_queue, self.box_queue,))
		self.box_process.start()
		
		# Introduce pose estimator to solve pose. Get one frame to setup the
		# estimator according to the image size.
		self.height, self.width = sample_frame.shape[:2]
		self.pose_estimator = PoseEstimator(img_size=(self.height, self.width))
		
		# Introduce scalar stabilizers for pose.
		self.pose_stabilizers = [Stabilizer(
			state_num=2,
			measure_num=1,
			cov_process=0.1,
			cov_measure=0.1) for _ in range(6)]
		
		self.tm = cv2.TickMeter()
		# Gaze tracking
		self.gaze = GazeTracking()
Example #10
0
def init():
    """MAIN"""
    # Video source from webcam or video file.
    video_src = args.cam if args.cam is not None else args.video
    if video_src is None:
        print(
            "Warning: video source not assigned, default webcam will be used.")
        video_src = 0

    cap = cv2.VideoCapture(video_src)
    if video_src == 0:
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    _, sample_frame = cap.read()

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    tm = cv2.TickMeter()

    return cap, video_src, img_queue, box_queue, tm, mark_detector, pose_estimator
Example #11
0
    def init(self):
        
        self.detector = RetinaFace('./model/R50', 0, 0, 'net3')
        self.mark_detector = MarkDetector()
        self.pose_stabilizers = [Stabilizer(
                state_num=2,
                measure_num=1,
                cov_process=0.1,
                cov_measure=0.1) for _ in range(6)]

        sample_img = None
        #if self.color_img is None:
        #    print("None")
        #    time.sleep(0.2)
        #    
        #height, width, _ = self.color_img.shape

        self.pose_estimator = PoseEstimator(img_size=(480, 640))
def Camera_Capture():
    mark_detector = MarkDetector()
    name = input("Enter student id:")
    directory = os.path.join(facepath, name)
    
    if not os.path.exists(facepath):
        os.makedirs(facepath, exist_ok = 'True')
    
    if not os.path.exists(directory):
        try:
            os.makedirs(directory, exist_ok = 'True')
        except OSError as e:
            if e.errno != errno.EEXIST:
                print('invalid student id or access denied')
                return

    poses=['frontal','right','left','up','down']
    file=0
    cap = cv2.VideoCapture(file)
    
    ret, sample_frame = cap.read()
    i = 0
    count = 0
    if ret==False:
        return    
        
    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))
    
    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [Stabilizer(
        state_num=2,
        measure_num=1,
        cov_process=0.1,
        cov_measure=0.1) for _ in range(6)]
    images_saved_per_pose=0
    number_of_images = 0
    
    shape_predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
    face_aligner = FaceAligner(shape_predictor, desiredFaceWidth=FACE_WIDTH)
    while i<5:
        saveit = False
        # Read frame, crop it, flip it, suits your needs.
        ret, frame = cap.read()
        if ret is False:
            break
        if count % 5 !=0: # skip 5 frames
            count+=1
            continue
        if images_saved_per_pose==IMAGE_PER_POSE:
            i+=1
            images_saved_per_pose=0

        # If frame comes from webcam, flip it so it looks like a mirror.
        if file == 0:
            frame = cv2.flip(frame, 2)
        original_frame=frame.copy()
        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        
        facebox = mark_detector.extract_cnn_facebox(frame)
    
        if facebox is not None:
            # Detect landmarks from image of 128x128.
            x1=max(facebox[0]-0,0)
            x2=min(facebox[2]+0,width)
            y1=max(facebox[1]-0,0)
            y2=min(facebox[3]+0,height)
            
            face = frame[y1: y2,x1:x2]
            face_img = cv2.resize(face, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
    
            marks = mark_detector.detect_marks([face_img])
    
            # Convert the marks locations from local CNN to global image.
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]
        
            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)
    
            # Stabilize the pose.
            steady_pose = []
            pose_np = np.array(pose).flatten()
            for value, ps_stb in zip(pose_np, pose_stabilizers):
                ps_stb.update([value])
                steady_pose.append(ps_stb.state[0])
            steady_pose = np.reshape(steady_pose, (-1, 3))
    
            # print(steady_pose[0][0])
            # if steady_pose[0][0]>0.1:
            #     print('right')
            # else: 
            #     if steady_pose[0][0]<-0.1:
            #         print('left')
            # if steady_pose[0][1]>0.1:
            #     print('down')
            # else: 
            #     if steady_pose[0][1]<-0.1:
            #         print('up')
            # print(steady_pose[0])
            if i==0:
                if abs(steady_pose[0][0])<ANGLE_THRESHOLD and abs(steady_pose[0][1])<ANGLE_THRESHOLD:
                    images_saved_per_pose+=1
                    saveit = True                    
            if i==1:
                if steady_pose[0][0]>ANGLE_THRESHOLD:
                    images_saved_per_pose+=1
                    saveit = True
            if i==2:
                if steady_pose[0][0]<-ANGLE_THRESHOLD:
                    images_saved_per_pose+=1
                    saveit = True
            if i==3:
                if steady_pose[0][1]<-ANGLE_THRESHOLD:
                    images_saved_per_pose+=1
                    saveit = True
            if i==4:
                if steady_pose[0][1]>ANGLE_THRESHOLD:
                    images_saved_per_pose+=1
                    saveit = True
            # Show preview.
            if i>=5:
                print ('Thank you')
                break

            frame = cv2.putText(frame,poses[i] +' : '+ str(images_saved_per_pose)+'/'+str(IMAGE_PER_POSE),(10,50),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),1,cv2.LINE_AA)
            frame = cv2.rectangle(frame, (x1,y1), (x2,y2),(255,255,0),2)
            cv2.imshow("Preview", frame)

            if saveit:                        
                face = dlib.rectangle(x1, y1, x2, y2)
                face_aligned = face_aligner.align(original_frame, frame_gray, face)
                cv2.imwrite(os.path.join(directory, str(name)+'_'+str(number_of_images)+'.jpg'), face_aligned)
                print(images_saved_per_pose)
                number_of_images+=1

        if cv2.waitKey(10) == 27:
            break    
    cap.release()
    cv2.destroyAllWindows()
 def stabilizePart(self, acceleratedVideo, writeFunction):
     stabilizer = Stabilizer(self.video, acceleratedVideo, self.velocity)
     stabilizer.run(writeFunction)
     os.chdir(self.path)
def main():
    instructions = 0
    print "--- Intention classification for communication between a human and a robot ---"
    if instructions == 1:
        print "First you will be required to present a facial expression before you will do a head movement."
        print "If done correctly these gestures will be detected by the robot and it will perform the desired task."
        raw_input("Press Enter to continue...")

    if instructions == 1:
        print "This is the module for facial expression recognition."
        print "This program can detect the emotions: Happy and Angry."
        print "The program will look for the expression for 3 seconds."
    raw_input("To proceed to Facial Expression Recognition press Enter...")
    predictExp = 0

    # Load Facial Expression Recognition trained model
    print "- Loading FER model... -"
    #faceExpModel = tf.keras.models.load_model("/home/bjornar/ML_models/FER/Good models(80+)/tf_keras_weights_ninthRev-88percent/tf_keras_weights_ninthRev.hdf5")
    faceExpModel = tf.keras.models.load_model(
        "/home/project/Bjorn/tf_keras_weights_ninthRev-88percent/tf_keras_weights_ninthRev.hdf5"
    )

    # Load Face Cascade for Face Detection
    print "- Loading Face Cascade for Face Detection... -"
    #cascPath = "/home/bjornar/MScDissertation/TrainingData/FaceDetection/haarcascade_frontalface_default.xml"
    cascPath = "/home/project/Bjorn/IntentionClassification-Repository/haarcascade_frontalface_default.xml"
    faceCascade = cv2.CascadeClassifier(cascPath)

    ## Initializing Head Movement variables
    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    sample_frame = cv2.imread("sample_frame.png")
    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]

    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    noseMarks = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
                 [0, 0], [0, 0], [0, 0]]
    counter = 0
    font = cv2.FONT_HERSHEY_SIMPLEX
    numXPoints = 0
    numYPoints = 0
    sumX = 0
    sumY = 0

    currentTime = 0
    previousTime1 = 0
    previousTime2 = 0

    directionArray = []
    moveSequence = []
    moves = []
    classifyMoves = 0
    headPoseDirection = 'emtpy'

    if camera == 'kinect':
        ## Initialize Kinect camera
        print "Initializing camera..."
        try:
            from pylibfreenect2 import OpenGLPacketPipeline
            pipeline = OpenGLPacketPipeline()
        except:
            try:
                from pylibfreenect2 import OpenCLPacketPipeline
                pipeline = OpenCLPacketPipeline()
            except:
                from pylibfreenect2 import CpuPacketPipeline
                pipeline = CpuPacketPipeline()
        #print("Packet pipeline:", type(pipeline).__name__)

        # Create and set logger
        #logger = createConsoleLogger(LoggerLevel.Debug)
        setGlobalLogger()

        fn = Freenect2()
        num_devices = fn.enumerateDevices()
        if num_devices == 0:
            print("- No device connected! -")
            sys.exit(1)

        serial = fn.getDeviceSerialNumber(0)
        device = fn.openDevice(serial, pipeline=pipeline)

        listener = SyncMultiFrameListener(FrameType.Color | FrameType.Ir
                                          | FrameType.Depth)

        # Register listeners
        device.setColorFrameListener(listener)
        device.setIrAndDepthFrameListener(listener)

        device.start()

        # NOTE: must be called after device.start()
        registration = Registration(device.getIrCameraParams(),
                                    device.getColorCameraParams())

    elif camera == 'webcam':
        #video_capture = cv2.VideoCapture(0)
        video_capture = cv2.VideoCapture(-1)

    elif camera == 'video':
        #video_capture = cv2.VideoCapture(0)
        video_capture = cv2.VideoCapture(
            "/home/project/Bjorn/SonyHandycamTest.mp4")

    ## Facial Expression Recognition variables
    FER_prediction = []
    FERclass = ''
    FERstart = 0
    classifyMoves = 0

    ## Head movement variables
    predictHeadMov = 3
    HeadMov = []
    HMCclass = ''
    detectedFaces = []
    mark = []

    notDone = 0
    progressStatus = [0, 0]

    while notDone in progressStatus:  # This waits for each module to finsih
        if camera == 'kinect':
            frames = listener.waitForNewFrame()

            color = frames["color"]
            color = color.asarray()
            color = cv2.resize(color, (int(873), int(491)))
            color = color[0:480, 150:790]
            color = np.delete(color, np.s_[3::], 2)

        elif camera == 'webcam':
            # Capture frame-by-frame
            ret, color = video_capture.read()

        elif camera == 'video':
            # Capture frame-by-frame
            ret, color = video_capture.read()

        ## Detect facial expression
        predictExpNums = [1, 2]
        if predictExp == 0:
            while predictExp not in predictExpNums:
                predictExp = int(
                    raw_input(
                        "\nPress 1 to detect Facial Expression or press 2 to do Head Movement classification."
                    ))
            if predictExp == 1:
                predictExp = 1
                print "------ Facial Expression Recognition ------"
            elif predictExp == 2:
                predictHeadMov = 0
                progressStatus[0] = 1

            FERstart = time.time()

        elif predictExp == 1:
            currentTime = time.time()
            if currentTime - FERstart < 10:
                FER_prediction.append(
                    facialExpressionRecogntion(color, faceExpModel,
                                               faceCascade))
            else:
                predictExp = 2
                FER_prediction = filter(None, FER_prediction)
                FERclass = mostCommon(FER_prediction)
                FERclass = FERclass[2:7]
                predictHeadMov = 0
                if FERclass == '':
                    print("Did not detect an expression, try again.")
                    predictExp = 0
                else:
                    progressStatus[0] = 1
                    print "Detected expression: " + str(FERclass)
                    print "Progress: FER DONE"
                # else:
                #     #cv2.imwrite("sample_frame.png", color)
                #     break

        ## Detect head movement class
        if predictHeadMov == 0:
            predictHeadMov = int(
                raw_input(
                    "\nPress 1 to do Head Movement classification or 2 to skip."
                ))
            if predictHeadMov == 1:
                predictHeadMov = 1
                print "------ Head Movement Classification ------"
                moveTime = int(
                    raw_input(
                        "How many seconds should I record your movement?"))
                #moveTime = 2
            else:
                predictHeadMov = 2
            timer = time.time()
            previousTime1 = timer
            previousTime2 = timer

        if predictHeadMov == 1:
            print color.shape
            color = color[0:480, 0:480]
            color = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY)
            cv2.imshow("", color)
            raw_input()
            print color.shape
            # Feed frame to image queue.
            img_queue.put(color)

            #pdb.set_trace()

            # Get face from box queue.
            facebox = box_queue.get()
            print color.shape

            if facebox is not None:
                # Detect landmarks from image of 128x128.
                face_img = color[facebox[1]:facebox[3], facebox[0]:facebox[2]]
                face_img = cv2.resize(face_img,
                                      (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
                face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
                marks = mark_detector.detect_marks(face_img)

                #Convert the marks locations from local CNN to global image.
                marks *= (facebox[2] - facebox[0])
                marks[:, 0] += facebox[0]
                marks[:, 1] += facebox[1]

                font = cv2.FONT_HERSHEY_SIMPLEX
                cv2.putText(color, headPoseDirection, (20, 70), font, 1,
                            (0, 255, 0), 4)

                # # Get average position of nose
                noseMarksTemp = []
                noseMarksTemp.append(marks[30][0])
                noseMarksTemp.append(marks[30][1])
                noseMarks[0] = noseMarksTemp

                for i in range(9, 0, -1):
                    noseMarks[i] = noseMarks[i - 1]

                # Get the direction of head movement
                headPoseDirection = calculateDirection(noseMarks)

                directionArray.append(headPoseDirection)

                if classifyMoves == 0:
                    classifyMoves = 1
                    timer = time.time()
                    previousTime1 = timer
                    previousTime2 = timer

                currentTime = time.time()
                if currentTime - previousTime1 > moveTime and classifyMoves == 1:
                    print "------------------------------------------------"
                    print "Elapsed timer 1: " + str(currentTime -
                                                    previousTime1)

                    # Get most common direction
                    HMCclass = mostCommon(directionArray)

                    classifyMoves = 2
                    directionArray = []
                    previousTime1 = currentTime

                    progressStatus[1] = 1
                    print "Progress: HMC DONE"
            else:
                print "Did not detect a face"
        elif predictHeadMov == 2:
            progressStatus[1] = 1
            print "Skipped Head Movement Estimation."
            break

        # if notDone in progressStatus and predictHeadMov == 2 and predictExp == 2:
        #     print "You seem to have skipped one or more tasks."
        #     inpt = ''
        #     while inpt == '':
        #         inpt = raw_input("To do FER press 1 and to do HMC press 2...")
        #         if input == '1':
        #             predictExp = 1
        #         elif input == '2':
        #             predictHeadMov

        cv2.imshow("", color)
        if camera == 'kinect':
            listener.release(frames)

        key = cv2.waitKey(delay=1)
        if key == ord('q'):
            break

    if camera == 'kinect':
        listener.release(frames)
        device.stop()
        device.close()
    elif camera == 'webcam' or camera == 'video':
        video_capture.release()

    cv2.destroyAllWindows()

    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()

    print "---------------- RESULT ----------------"

    if FERclass != '':
        print "Detected facial expression: " + str(FERclass)
    else:
        print "Did not detect any expression."

    if HMCclass != '':
        print "Detected head movement: " + str(HMCclass)
    else:
        print "Did not detect a head movement."

    print "----------------------------------------"

    intentionClassification = [FERclass, HMCclass]

    return intentionClassification
Example #15
0
def main():
    #bagreader = BagFileReader(args.video, 640,480,848,480,30,30)
    bagreader = BagFileReader(args.video, 640, 480, 640, 480, 15, 15)

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()
    sample_frame = bagreader.get_color_frame()
    sample_frame = cv2.cvtColor(sample_frame, cv2.COLOR_BGR2RGB)
    height, width, _ = sample_frame.shape
    fourcc = cv2.VideoWriter_fourcc(*'MJPG')
    out = cv2.VideoWriter('output-%s.avi' % args.name_output, fourcc, args.fps,
                          (width, height))

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    tm = cv2.TickMeter()

    while True:

        t1 = time.time()
        # Read frame, crop it, flip it, suits your needs.
        frame = bagreader.get_color_frame()
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        if frame is False:
            break

        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]

        # If frame comes from webcam, flip it so it looks like a mirror.
        # if video_src == 0:
        #     frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)

        # Get face from box queue.
        faceboxes = box_queue.get()
        print(faceboxes)

        mess = "Not detect pose"

        if faceboxes is not None:
            if isinstance(faceboxes[1], int):
                faceboxes = [faceboxes]
            for facebox in faceboxes:
                # Detect landmarks from image of 128x128.
                face_img = frame[facebox[1]:facebox[3], facebox[0]:facebox[2]]
                face_img = cv2.resize(face_img,
                                      (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
                face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)

                tm.start()
                marks = mark_detector.detect_marks([face_img])
                tm.stop()

                # Convert the marks locations from local CNN to global image.
                marks *= (facebox[2] - facebox[0])
                marks[:, 0] += facebox[0]
                marks[:, 1] += facebox[1]

                # Uncomment following line to show raw marks.
                # mark_detector.draw_marks(
                #     frame, marks, color=(0, 255, 0))

                # Uncomment following line to show facebox.
                # mark_detector.draw_box(frame, [facebox])

                # Try pose estimation with 68 points.
                pose = pose_estimator.solve_pose_by_68_points(marks)

                # Stabilize the pose.
                steady_pose = []
                pose_np = np.array(pose).flatten()
                for value, ps_stb in zip(pose_np, pose_stabilizers):
                    ps_stb.update([value])
                    steady_pose.append(ps_stb.state[0])
                steady_pose = np.reshape(steady_pose, (-1, 3))

                # Uncomment following line to draw pose annotation on frame.
                pose_estimator.draw_annotation_box(frame,
                                                   pose[0],
                                                   pose[1],
                                                   color=(255, 128, 128))

                # Uncomment following line to draw stabile pose annotation on frame.
                t2 = time.time()
                mess = round(1 / (t2 - t1), 2)
                # pose_estimator.draw_annotation_box(
                #     frame, steady_pose[0], steady_pose[1], color=(128, 255, 128))

                # Uncomment following line to draw head axes on frame.
                # pose_estimator.draw_axes(frame, stabile_pose[0], stabile_pose[1])

        cv2.putText(frame,
                    "FPS: " + "{}".format(mess), (20, 20),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.75, (0, 255, 0),
                    thickness=2)
        # Show preview.
        cv2.imshow("Preview", frame)
        out.write(frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    out.release()
    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()
Example #16
0
def run():
    # Load the parameters
    conf = config()

    # initialize dlib's face detector (HOG-based) and then create the
    # facial landmark predictor
    print("[INFO] loading facial landmark predictor...")
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(conf.shape_predictor_path)

    # grab the indexes of the facial landmarks for the left and
    # right eye, respectively
    (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
    (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]

    # initialize the video stream and sleep for a bit, allowing the
    # camera sensor to warm up
    # cap = cv2.VideoCapture(conf.vedio_path)
    cap = cv2.VideoCapture(0)
    if conf.vedio_path == 0:
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    _, sample_frame = cap.read()
    # sample_frame = imutils.rotate(sample_frame, 90)

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    tm = cv2.TickMeter()
    # Gaze tracking
    gaze = GazeTracking()

    # loop over the frames from the video stream
    temp_steady_pose = 0
    while True:
        # grab the frame from the threaded video stream, resize it to
        # have a maximum width of 400 pixels, and convert it to
        # grayscale
        frame_got, frame = cap.read()

        # Empty frame
        frame_empty = np.zeros(frame.shape)

        # frame = imutils.rotate(frame, 90)
        frame = imutils.resize(frame, width=400)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        # detect faces in the grayscale frame
        rects = detector(gray, 0)

        # check to see if a face was detected, and if so, draw the total
        # number of faces on the frame
        if len(rects) > 0:
            text = "{} face(s) found".format(len(rects))
            # cv2.putText(frame, text, (30, 30), cv2.FONT_HERSHEY_SIMPLEX,
            # 			0.5, (0, 0, 255), 2)

            # Empty frame
            cv2.putText(frame_empty, text, (30, 30), cv2.FONT_HERSHEY_SIMPLEX,
                        0.5, (0, 0, 255), 2)

        # initialize the frame counters and the total number of blinks
        TOTAL = 0
        COUNTER = 0
        # loop over the face detections
        for (i, rect) in enumerate(rects):
            # determine the facial landmarks for the face region, then
            # convert the facial landmark (x, y)-coordinates to a NumPy
            # array
            shape = predictor(gray, rect)
            shape = face_utils.shape_to_np(shape)

            # ********************************
            # Blink detection
            # extract the left and right eye coordinates, then use the
            # coordinates to compute the eye aspect ratio for both eyes
            leftEye = shape[lStart:lEnd]
            rightEye = shape[rStart:rEnd]
            leftEAR = eye_aspect_ratio(leftEye)
            rightEAR = eye_aspect_ratio(rightEye)

            # average the eye aspect ratio together for both eyes
            ear = (leftEAR + rightEAR) / 2.0

            # compute the convex hull for the left and right eye, then
            # visualize each of the eyes
            leftEyeHull = cv2.convexHull(leftEye)
            rightEyeHull = cv2.convexHull(rightEye)
            # cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
            # cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)

            # Frame empty
            cv2.drawContours(frame_empty, [leftEyeHull], -1, (0, 255, 0), 1)
            cv2.drawContours(frame_empty, [rightEyeHull], -1, (0, 255, 0), 1)

            # check to see if the eye aspect ratio is below the blink
            # threshold, and if so, increment the blink frame counter
            if ear < conf.EYE_AR_THRESH:
                COUNTER += 1

            # otherwise, the eye aspect ratio is not below the blink
            # threshold
            else:
                # if the eyes were closed for a sufficient number of
                # then increment the total number of blinks
                if COUNTER >= conf.EYE_AR_CONSEC_FRAMES:
                    TOTAL += 1

                # reset the eye frame counter
                COUNTER = 0

            # draw the total number of blinks on the frame along with
            # the computed eye aspect ratio for the frame
            # cv2.putText(frame, "Blinks: {}".format(TOTAL), (30, 60),
            # 			cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            # cv2.putText(frame, "EAR: {:.2f}".format(ear), (30, 90),
            # 			cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

            # Frame empty
            cv2.putText(frame_empty, "Blinks: {}".format(TOTAL), (30, 60),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 255), 2)
            cv2.putText(frame_empty, "EAR: {:.2f}".format(ear), (30, 90),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 255), 2)
            # ********************************
            # convert dlib's rectangle to a OpenCV-style bounding box
            # [i.e., (x, y, w, h)], then draw the face bounding box
            (x, y, w, h) = face_utils.rect_to_bb(rect)
            # cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
            #
            # show the face number
            # cv2.putText(frame, "Face #{}".format(i + 1), (30, 120),
            # 			cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

            # Frame empty
            cv2.rectangle(frame_empty, (x, y), (x + w, y + h), (0, 255, 0), 2)

            # show the face number
            cv2.putText(frame_empty, "Face #{}".format(i + 1), (30, 120),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 255), 2)

            # loop over the (x, y)-coordinates for the facial landmarks
            # and draw them on the image
            for (x, y) in shape:
                # cv2.circle(frame, (x, y), 1, (0, 255, 255), -1)
                cv2.circle(frame_empty, (x, y), 1, (0, 255, 255), -1)

        # **********************************************************
        if frame_got is False:
            break

        # If frame comes from webcam, flip it so it looks like a mirror.
        if conf.vedio_path == 0:
            frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)

        # Get face from box queue.
        facebox = box_queue.get()

        if facebox is not None:
            # Detect landmarks from image of 128x128.
            face_img = frame[facebox[1]:facebox[3], facebox[0]:facebox[2]]
            face_img = cv2.resize(face_img,
                                  (conf.CNN_INPUT_SIZE, conf.CNN_INPUT_SIZE))
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)

            tm.start()
            marks = mark_detector.detect_marks([face_img])
            tm.stop()

            # Convert the marks locations from local CNN to global image.
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # Uncomment following line to show raw marks.
            # mark_detector.draw_marks(
            #     frame, marks, color=(0, 255, 0))

            # Uncomment following line to show facebox.
            # mark_detector.draw_box(frame, [facebox])

            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)

            # Stabilize the pose.
            steady_pose = []
            pose_np = np.array(pose).flatten()
            for value, ps_stb in zip(pose_np, pose_stabilizers):
                ps_stb.update([value])
                steady_pose.append(ps_stb.state[0])
            steady_pose = np.reshape(steady_pose, (-1, 3))

            # Uncomment following line to draw pose annotation on frame.
            # pose_estimator.draw_annotation_box(
            # 	frame, pose[0], pose[1], color=(255, 128, 128))

            # Uncomment following line to draw stabile pose annotation on frame.
            # pose_estimator.draw_annotation_box(frame, steady_pose[0], steady_pose[1], color=(128, 255, 128))

            # Uncomment following line to draw head axes on frame.
            # pose_estimator.draw_axes(frame, steady_pose[0], steady_pose[1])
            pose_estimator.draw_axes(frame_empty, steady_pose[0],
                                     steady_pose[1])
            print('steady pose vector: {}'.format(steady_pose[0],
                                                  steady_pose[1]))
        else:
            # cv2.putText(frame, "Signal loss", (200, 200),
            # 			cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
            cv2.putText(frame_empty, "Signal loss", (200, 200),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
        # ******************************************************************
        # We send this frame to GazeTracking to analyze it
        gaze.refresh(frame)

        frame = gaze.annotated_frame()
        text = ""

        if gaze.is_blinking():
            text = "Blinking"
        elif gaze.is_right():
            text = "Looking right"
        elif gaze.is_left():
            text = "Looking left"
        elif gaze.is_center():
            text = "Looking center"

        cv2.putText(frame_empty, text, (250, 250), cv2.FONT_HERSHEY_DUPLEX,
                    0.5, (147, 58, 31), 2)

        left_pupil = gaze.pupil_left_coords()
        right_pupil = gaze.pupil_right_coords()
        cv2.putText(frame_empty, "Left pupil:  " + str(left_pupil), (250, 280),
                    cv2.FONT_HERSHEY_DUPLEX, 0.5, (147, 58, 31), 1)
        cv2.putText(frame_empty, "Right pupil: " + str(right_pupil),
                    (250, 310), cv2.FONT_HERSHEY_DUPLEX, 0.5, (147, 58, 31), 1)

        # ********************************************************************
        # show the frame
        # cv2.imshow("Frame", frame)
        cv2.imshow("Frame", frame_empty)
        key = cv2.waitKey(1) & 0xFF

        # if the `q` key was pressed, break from the loop
        if key == ord("q"):
            break

    # do a bit of cleanup
    cv2.destroyAllWindows()
    cap.stop()
    box_queue = Queue()
    img_queue.put(sample_frame)
    thread = threading.Thread(target=get_face,
                              args=(mark_detector, img_queue, box_queue))
    thread.daemon = True
    thread.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    tm = cv2.TickMeter()

    while True:
        # Read frame, crop it, flip it, suits your needs.
        frame_got, frame = cap.read()
        if frame_got is False:
            break

        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]

        # If frame comes from webcam, flip it so it looks like a mirror.
Example #18
0
    def __init__(self):
        """ Subscribers """
        rospy.Subscriber("/camera/depth/image_rect_raw",
                         Image,
                         self.callback_depth,
                         queue_size=1)
        rospy.Subscriber("/camera/infra1/image_rect_raw",
                         Image,
                         self.callback_infra,
                         queue_size=1)
        rospy.Subscriber("/flag_pub",
                         Float32,
                         self.callback_flag,
                         queue_size=1)
        """ Publishers """
        self.img_bag_pub = rospy.Publisher("Image_bag", Image, queue_size=1)
        self.info = rospy.Publisher("driver_info", driver_info, queue_size=1)
        self.msg_driver = driver_info()
        self.quaternion = rospy.Publisher("quaternion",
                                          PoseStamped,
                                          queue_size=1)
        self.q = PoseStamped()
        self.q.header.frame_id = "map"
        self.heart_rate_b = rospy.Publisher("heart_rate_b",
                                            Float32,
                                            queue_size=1)
        self.heart_rate_b_msg = Float32()
        """ Node Parameters """
        self.cont_video = 0
        self.data_buffernose_gray = [0] * 200
        self.data_bufferforehead_gray = [0] * 200
        self.matrix_v = [0]
        self.nose_ica_g = [0]
        self.fore_ica_g = [0]
        self.time_v = []
        self.detector = dlib.get_frontal_face_detector()
        self.predictor = dlib.shape_predictor(
            os.path.join(os.path.dirname(sys.path[0]), 'scripts',
                         'shape_predictor_68_face_landmarks.dat'))
        self.model68 = (os.path.join(os.path.dirname(sys.path[0]), 'scripts',
                                     'model.txt'))
        self.bpm_a = 0
        self.bpm_a_b = 0
        self.window_hr = 0
        self.yawn_state = False
        self.window_hr_b = 0
        self.pulso_pantalla = 0
        self.pulso_guardado = 0
        self.pulso_adquirido = 0
        self.pulso_pantalla_b = 0
        self.pulso_guardado_b = 0
        self.pulso_adquirido_b = 0
        self.pitch_counter = 0
        self.cont_state = 0
        self.cont = 0
        self.cont2 = 0
        self.yaw_counter = 0
        self.cont_yawn = 0
        self.yawn_counter = 0
        self.flag = 0
        self.flag_300 = 0
        self.eye_thresh = 0.3
        self.mouth_thresh = 0.60
        self.num_frames = 2
        self.blink_counter = 0
        self.total = 0
        self.eyes_open = 0.0
        self.eyes_closed = 0.0
        self.perclos = 0.0
        self.mouth_status = False

        #self.current_depth = []
        #cv2.namedWindow('frame')
        #self.img_publisher = rospy.Publisher("topico_imagen", Image)
        """Parameters for head pose estimation"""

        self.model_points_68 = self._get_full_model_points()
        self.size = (480, 640)
        self.focal_length = self.size[1]
        self.camera_center = (self.size[1] / 2, self.size[0] / 2)
        self.camera_matrix = np.array(
            [[self.focal_length, 0, self.camera_center[0]],
             [0, self.focal_length, self.camera_center[1]], [0, 0, 1]],
            dtype="double")
        self.dist_coeefs = np.zeros((4, 1))
        self.r_vec = np.array([[0.01891013], [0.08560084], [-3.14392813]])
        self.t_vec = np.array([[-14.97821226], [-10.62040383],
                               [-2053.03596872]])

        self.pose_stabilizers = [
            Stabilizer(state_num=2,
                       measure_num=1,
                       cov_process=0.1,
                       cov_measure=0.1) for _ in range(6)
        ]
        """Graph Parameters"""
Example #19
0
            cv.LINE_AA)
    cv.line(image, tuple(point_2d[3]), tuple(point_2d[8]), color, line_width,
            cv.LINE_AA)
    return image


def eye_aspect_ratio(eye):
    A = dist.euclidean(eye[1], eye[5])
    B = dist.euclidean(eye[2], eye[4])
    C = dist.euclidean(eye[0], eye[3])
    EAR = (A + B) / (2.0 * C)
    return EAR


pose_stabilizers = [
    Stabilizer(state_num=2, measure_num=1, cov_process=0.1, cov_measure=0.1)
    for _ in range(6)
]

face_detector = dlib.get_frontal_face_detector()
head_landmard_detector = dlib.shape_predictor(
    'shape_predictor_68_face_landmarks.dat')

#3D model for human facial landamrk
model_points = np.array([
    (0.0, 0.0, 0.0),  # Nose tip
    (0.0, -330.0, -65.0),  # Chin
    (-225.0, 170.0, -135.0),  # Left eye left corner
    (225.0, 170.0, -135.0),  # Right eye right corne
    (-150.0, -150.0, -125.0),  # Left Mouth corner
    (150.0, -150.0, -125.0)  # Right mouth corner
Example #20
0
 def setUp(self):
     originalVideo = Video('/home/victorhugomoura/Documents/example.mp4')
     acceleratedVideo = Video(
         '/home/victorhugomoura/Documents/Folder With Spaces/example.avi')
     velocity = 10
     self.stabilizer = Stabilizer(originalVideo, acceleratedVideo, velocity)
def main(video_src):
    """MAIN
    
    :param video_src: Source of video to analyze
    :type video_src: str or int"""
    cam = cv2.VideoCapture(video_src)
    _, sample_frame = cam.read()

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()
    face_detector = FaceDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face, args=(mark_detector, img_queue, box_queue,))
    #box_process = Process(target=get_faces, args=(face_detector, img_queue, box_queue,))
    box_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [Stabilizer(
        state_num=2,
        measure_num=1,
        cov_process=0.1,
        cov_measure=0.1) for _ in range(6)]

    #face expression recognizer initialization
    from keras.models import model_from_json
    model = model_from_json(open("./model/facial_expression_model_structure.json", "r").read())
    model.load_weights('./model/facial_expression_model_weights.h5') #load weights

    #-----------------------------

    emotions = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral')

    while True:
        input()
        # Read frame, crop it, flip it, suits your needs.
        frame_got, frame = cam.read()
        if frame_got is False:
            break

        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]

        # If frame comes from webcam, flip it so it looks like a mirror.
        if video_src == 0:
            frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)

        # Get face from box queue.

        #facebox = box_queue.get()

        faceboxes = dump_queue(box_queue)
        print("{} FACEBOXES".format(len(faceboxes)))
        for facebox in faceboxes:
            if min(facebox) < 0:
                continue
            # Detect landmarks from image of 128x128.
            face_img = frame[facebox[1]: facebox[3],
                             facebox[0]: facebox[2]]

            if not face_img.shape[0] or not face_img.shape[1]:
                continue

            face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
            marks = mark_detector.detect_marks(face_img)

            # Convert the marks locations from local CNN to global image.
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # Uncomment following line to show raw marks.
            # mark_detector.draw_marks(
            #     frame, marks, color=(0, 255, 0))

            detected_face = frame[facebox[1]: facebox[3],facebox[0]: facebox[2]] #crop detected face
            detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY) #transform to gray scale
            detected_face = cv2.resize(detected_face, (48, 48)) #resize to 48x48



            # emotion estimation
            img_pixels = image.img_to_array(detected_face)
            img_pixels = np.expand_dims(img_pixels, axis = 0)

            img_pixels /= 255 #pixels are in scale of [0, 255]. normalize all pixels in scale of [0, 1]

            predictions = model.predict(img_pixels) #store probabilities of 7 expressions

            #find max indexed array 0: angry, 1:disgust, 2:fear, 3:happy, 4:sad, 5:surprise, 6:neutral
            max_index = np.argmax(predictions[0])

            emotion = emotions[max_index]

            #write emotion text above rectangle

            #V_FONT_HERSHEY_SIMPLEX normal size sans-serif font
            #CV_FONT_HERSHEY_PLAIN small size sans-serif font
            #CV_FONT_HERSHEY_DUPLEX normal size sans-serif font (more complex than CV_FONT_HERSHEY_SIMPLEX )
            #CV_FONT_HERSHEY_COMPLEX normal size serif font
            #CV_FONT_HERSHEY_TRIPLEX normal size serif font (more complex than CV_FONT_HERSHEY_COMPLEX )
            #CV_FONT_HERSHEY_COMPLEX_SMALL smaller version of CV_FONT_HERSHEY_COMPLEX
            #CV_FONT_HERSHEY_SCRIPT_SIMPLEX hand-writing style font
            #CV_FONT_HERSHEY_SCRIPT_COMPLEX more complex variant of CV_FONT_HERSHEY_SCRIPT_SIMPLEX

            image_text = ""
            for index in range(len(emotions)):
                if predictions[0][index]>0.3:
                    image_text += "{0} : {1} %\n".format(emotions[index], int(predictions[0][index]*100))

            space = 0
            for text in image_text.strip().split("\n"):
                cv2.putText(
                img = frame,
                text= text,
                org =(int(facebox[0]), int(facebox[1])-space),
                fontFace = cv2.FONT_HERSHEY_PLAIN,
                fontScale = 0.8,
                color   =  (255,255,255),
                thickness = 1
                )
                space += int(0.25*48)



            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)
            #pose = pose_estimator.solve_pose(marks)


            # Stabilize the pose.
            #stabile_pose = []
            #pose_np = np.array(pose).flatten()
            #for value, ps_stb in zip(pose_np, pose_stabilizers):
            #    ps_stb.update([value])
            #    stabile_pose.append(ps_stb.state[0])
            #stabile_pose = np.reshape(stabile_pose, (-1, 3))

            # Uncomment following line to draw pose annotaion on frame.
            pose_estimator.draw_annotation_box(
                 frame, pose[0], pose[1], color=(255, 128, 128))

            # Uncomment following line to draw stabile pose annotaion on frame.
            #pose_estimator.draw_annotation_box(
            #    frame, stabile_pose[0], stabile_pose[1], color=(128, 255, 128))


        # Show preview.
        cv2.imshow("Preview", frame)
        if cv2.waitKey(10) == 27:
            break

    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()
def main():
    """MAIN"""
    # video source from webcam or video file
    videoSource = args.cam if args.cam is not None else args.video
    if videoSource is None:
        print(
            "Warning: video source not assigned, default webcam will be used.")
        videoSource = 0

    cap = cv2.VideoCapture(videoSource)
    if videoSource == 0:
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    _, sampleFrame = cap.read()

    # introduce markDetector to detect landmarks
    markDetector = MarkDetector()

    # setup process and queues for multiprocessing
    imgQueue = Queue()
    boxQueue = Queue()
    imgQueue.put(sampleFrame)
    boxProcess = Process(target=getFace,
                         args=(
                             markDetector,
                             imgQueue,
                             boxQueue,
                         ))
    boxProcess.start()

    # introduce pose estimator to solve pose
    # get one frame to setup the estimator according to the image size
    height, width = sampleFrame.shape[:2]
    poseEstimator = PoseEstimator(imgSize=(height, width))

    # introduce scalar stabilizers for pose
    poseStabilizers = [
        Stabilizer(stateNum=2, measureNum=1, covProcess=0.1, covMeasure=0.1)
        for _ in range(6)
    ]

    tm = cv2.TickMeter()

    while True:
        # read frame, crop it, flip it, suits your needs
        frameGot, frame = cap.read()
        if frameGot is False:
            break

        # crop it if frame is larger than expected
        # frame = frame[0:480, 300:940]

        # if frame comes from webcam, flip it so it looks like a mirror
        if videoSource == 0:
            frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face
        # 2. detect landmarks
        # 3. estimate pose

        # feed frame to image queue
        imgQueue.put(frame)

        # get face from box queue
        facebox = boxQueue.get()

        if facebox is not None:
            # detect landmarks from image of 128x128
            faceImg = frame[facebox[1]:facebox[3], facebox[0]:facebox[2]]
            faceImg = cv2.resize(faceImg, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            faceImg = cv2.cvtColor(faceImg, cv2.COLOR_BGR2RGB)

            tm.start()
            marks = markDetector.detectMarks([faceImg])
            tm.stop()

            # convert the marks locations from local CNN to global image
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # uncomment following line to show raw marks
            # markDetector.drawMarks(frame, marks, color=(0, 255, 0))

            # uncomment following line to show facebox
            # markDetector.drawBox(frame, [facebox])

            # try pose estimation with 68 points
            pose = poseEstimator.solvePoseBy68Points(marks)

            # stabilize the pose
            steadyPose = []
            poseNp = np.array(pose).flatten()
            for value, psStb in zip(poseNp, poseStabilizers):
                psStb.update([value])
                steadyPose.append(psStb.state[0])
            steadyPose = np.reshape(steadyPose, (-1, 3))

            # uncomment following line to draw pose annotation on frame
            # poseEstimator.drawAnnotationBox(frame, pose[0], pose[1], color=(255, 128, 128))

            # uncomment following line to draw stabile pose annotation on frame
            poseEstimator.drawAnnotationBox(frame,
                                            steadyPose[0],
                                            steadyPose[1],
                                            color=(128, 255, 128))

            # uncomment following line to draw head axes on frame
            # poseEstimator.drawAxes(frame, stabile_pose[0], stabile_pose[1])

        # Show preview.
        cv2.imshow("Preview", frame)
        if cv2.waitKey(10) == 27:
            break

    # Clean up the multiprocessing process.
    boxProcess.terminate()
    boxProcess.join()
Example #23
0
def main():
    """MAIN"""
    cv2.namedWindow("Test")  # Create a named window
    cv2.moveWindow("Test", 900, 600)  # Move it to (40,30)

    screenWidth, screenHeight = pyautogui.size()
    st = 'Last command'

    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    _, sample_frame = cap.read()

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()

    # Setting up process for listening to audio commands
    voice_command_queue = Q()
    stt_process = Thread(target=get_voice_command,
                         args=(voice_command_queue, ))
    stt_process.setDaemon(True)
    stt_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    tm = cv2.TickMeter()

    while True:
        # Read frame, crop it, flip it, suits your needs.
        frame_got, frame = cap.read()
        if frame_got is False:
            break

        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]

        # If frame comes from webcam, flip it so it looks like a mirror.
        frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)

        # Get face from box queue.
        facebox = box_queue.get()

        if facebox is not None:
            # Detect landmarks from image of 128x128.
            face_img = frame[facebox[1]:facebox[3], facebox[0]:facebox[2]]
            face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)

            tm.start()
            marks = mark_detector.detect_marks([face_img])
            tm.stop()

            # Convert the marks locations from local CNN to global image.
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # Uncomment following line to show raw marks.
            # mark_detector.draw_marks(
            #     frame, marks, color=(0, 255, 0))

            # Uncomment following line to show facebox.
            # mark_detector.draw_box(frame, [facebox])

            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)

            # Stabilize the pose.
            steady_pose = []
            pose_np = np.array(pose).flatten()
            for value, ps_stb in zip(pose_np, pose_stabilizers):
                ps_stb.update([value])
                steady_pose.append(ps_stb.state[0])
            steady_pose = np.reshape(steady_pose, (-1, 3))

            # Uncomment following line to draw pose annotation on frame.
            # pose_estimator.draw_annotation_box(
            #     frame, pose[0], pose[1], color=(255, 128, 128))

            # Uncomment following line to draw stabile pose annotation on frame.
            pose_estimator.draw_annotation_box(frame,
                                               steady_pose[0],
                                               steady_pose[1],
                                               color=(255, 128, 128))

            # Uncomment following line to draw head axes on frame.
            endpoints = pose_estimator.getEndPoints(frame, steady_pose[0],
                                                    steady_pose[1])

            deltax = endpoints[1][0] - endpoints[0][0]
            deltay = endpoints[1][1] - endpoints[0][1]

            xpos = math.floor((deltax + 44) * screenWidth / 88)
            ypos = math.floor((deltay + 14) * screenHeight / 58)

            # print(xpos, ypos)

            pyautogui.moveTo(xpos, ypos)

            if not voice_command_queue.empty():

                command = voice_command_queue.get_nowait()
                if 'click' in command or 'select' in command:
                    pyautogui.click()
                    st = 'Click'
                elif 'double' in command or 'in' in command:
                    pyautogui.doubleClick()
                    st = 'Double Click'
                elif 'right' in command or 'menu' in command or 'light' in command:
                    pyautogui.rightClick()
                    st = 'Right Click'

                print(command)

        cv2.putText(frame, st, (0, 100), cv2.FONT_HERSHEY_SIMPLEX, 20, 255)
        scale_percent = 30
        # calculate the 50 percent of original dimensions
        width = int(frame.shape[1] * scale_percent / 100)
        height = int(frame.shape[0] * scale_percent / 100)

        # dsize
        dsize = (width, height)

        # resize image
        output = cv2.resize(frame, dsize)

        cv2.moveWindow("Test", screenWidth - width, screenHeight - height)

        # Show preview.
        cv2.imshow("Test", output)
        if cv2.waitKey(10) == 27:
            break

    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()
Example #24
0
def main():
    """MAIN"""
    # Video source from webcam or video file.
    video_src = args.cam if args.cam is not None else args.video
    if video_src is None:
        print(
            "Warning: video source not assigned, default webcam will be used.")
        video_src = 0

    cap = cv2.VideoCapture(video_src)
    if video_src == 0:
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    _, sample_frame = cap.read()

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    tm = cv2.TickMeter()

    while True:
        # Read frame, crop it, flip it, suits your needs.
        frame_got, frame = cap.read()
        if frame_got is False:
            break

        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]

        # If frame comes from webcam, flip it so it looks like a mirror.
        if video_src == 0:
            frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)

        # Get face from box queue.
        facebox = box_queue.get()

        if facebox is not None:
            # Detect landmarks from image of 128x128.
            face_img = frame[facebox[1]:facebox[3], facebox[0]:facebox[2]]
            face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)

            tm.start()
            marks = mark_detector.detect_marks([face_img])
            tm.stop()

            # Convert the marks locations from local CNN to global image.
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # Uncomment following line to show raw marks.
            mark_detector.draw_marks(frame, marks, color=(0, 255, 0))
            right_corner = tuple([int(i) for i in marks[36]])
            left_corner = tuple([int(i) for i in marks[45]])
            # print(marks[36], marks[45])
            cv2.line(frame, right_corner, left_corner, (255, 0, 0), 2)

            pixel_distance = int(
                math.sqrt((right_corner[0] - left_corner[0])**2 +
                          (right_corner[1] - left_corner[1])**2))
            estimated_distance = (real_width * focal_length) / pixel_distance

            cv2.putText(frame, str(round(estimated_distance, 2)), (100, 100),
                        cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0))

            # Uncomment following line to show facebox.
            # mark_detector.draw_box(frame, [facebox])

            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)

            # Stabilize the pose.
            steady_pose = []
            pose_np = np.array(pose).flatten()
            for value, ps_stb in zip(pose_np, pose_stabilizers):
                ps_stb.update([value])
                steady_pose.append(ps_stb.state[0])
            steady_pose = np.reshape(steady_pose, (-1, 3))

            # Uncomment following line to draw pose annotation on frame.
            # pose_estimator.draw_annotation_box(
            #     frame, pose[0], pose[1], color=(255, 128, 128))

            # Uncomment following line to draw stabile pose annotation on frame.
            # pose_estimator.draw_annotation_box(
            #    frame, steady_pose[0], steady_pose[1], color=(128, 255, 128))

            # Uncomment following line to draw head axes on frame.
            print(steady_pose[1])
            pose_estimator.draw_axes(frame, steady_pose[0], steady_pose[1])

            angles = process_eyes(frame, marks)
            if bool(angles) is True:
                # print(angles)
                angles = cvt_to_radians(angles)
                rotated_vector = rotate_vector(steady_pose[0],
                                               angles['right'][0],
                                               angles['right'][1])
                shifted_translation_vector = np.copy(steady_pose[1])
                shifted_translation_vector[0] += 50
                shifted_translation_vector[1] += 50
                pose_estimator.draw_axes(frame, rotated_vector,
                                         shifted_translation_vector)

        # Show preview.
        cv2.imshow("Preview", frame)
        if cv2.waitKey(10) == 27:
            break

    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()
def headPoseEstimation():
    print("HEAD POSE ESTIMATION...")
    """MAIN"""
    # Video source from webcam or video file.
    #video_src = 0
    #video_src = 'EWSN.avi'
    #cam = cv2.VideoCapture(video_src)
    #_, sample_frame = cam.read()

    # Video source from webcam or video file.
    video_src = args.cam if args.cam is not None else args.video
    if video_src is None:
        print(
            "Warning: video source not assigned, default webcam will be used.")
        video_src = 0

    cap = cv2.VideoCapture(video_src)
    if video_src == 0:
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    _, sample_frame = cap.read()

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()
    print("1")
    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()
    print("2")
    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    print("3")
    noseMarks = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
                 [0, 0], [0, 0], [0, 0]]
    counter = 0
    font = cv2.FONT_HERSHEY_SIMPLEX
    numXPoints = 0
    numYPoints = 0
    sumX = 0
    sumY = 0

    # start = time.time()
    # previousTime1 = start
    # previousTime2 = start
    currentTime = 0
    previousTime1 = 0
    previousTime2 = 0

    directionArray = []
    moveSequence = []
    moves = []
    classifyMoves = 0
    headPoseDirection = 'emtpy'

    while True:
        # Read frame, crop it, flip it, suits your needs.
        frame_got, frame = cap.read()
        if frame_got is False:
            break
        #print("4")
        #print(frame.shape)
        #print("5")
        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]

        # If frame comes from webcam, flip it so it looks like a mirror.
        #if video_src == 0:
        #    print("6")
        #    frame = cv2.flip(frame, 2)
        #    cv2.imwrite("Preview.png", frame)
        #    print("7")

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)
        #print("8")
        # Get face from box queue.
        facebox = box_queue.get()
        #print(type(facebox)
        #print(facebox
        #print("9")
        if facebox is not None:
            # Detect landmarks from image of 128x128.
            face_img = frame[facebox[1]:facebox[3], facebox[0]:facebox[2]]
            face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
            print(face_img.shape)
            marks = mark_detector.detect_marks(face_img)

            # Convert the marks locations from local CNN to global image.
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # # Get average position of nose
            noseMarksTemp = []
            noseMarksTemp.append(marks[30][0])
            noseMarksTemp.append(marks[30][1])
            noseMarks[0] = noseMarksTemp

            for i in range(9, 0, -1):
                noseMarks[i] = noseMarks[i - 1]

            # Get the direction of head movement
            headPoseDirection = calculateDirection(noseMarks)
            #if headPoseDirection != 'still':
            directionArray.append(headPoseDirection)
            #print(directionArray
            #print(len(directionArray)
            print("To capture a movement press 'a' and perform a movement.")
            #currentTime1 = time.time()
            if cv2.waitKey(5) == ord('a') and not classifyMoves:
                classifyMoves = 1
                print("Start classifying movement...")
                timer = time.time()
                currentTime = timer
                previousTime1 = timer
                previousTime2 = timer

            if cv2.waitKey(5) == ord('b') and classifyMoves:
                classifyMoves = 0
                print("Stopped classifying movement...")

            currentTime = time.time()
            if currentTime - previousTime1 > 2 and classifyMoves:
                print("------------------------------------------------")
                print("Elapsed timer 1: " + str(currentTime - previousTime1))
                #print(len(directionArray)

                # Get most common direction
                moveClass = mostCommon(directionArray)
                #moveSequence.append(moveClass)
                print(moveClass)

                # Get a sequence of head movements
                # if currentTime - previousTime2 > 10 and classifyMoves == 1 and len(moves) == 0:
                #     print("Elapsed timer 2: " + str(currentTime - previousTime2)
                #     numMoves = len(moveSequence)
                #     moves = moveSequence[(numMoves-5):(numMoves-1)]
                #     print(moves
                #     moveSequence = []
                #     previousTime2 = currentTime
                #     classifyMoves = 0
                classifyMoves = 0
                directionArray = []
                previousTime1 = currentTime

                print(
                    "To continue type 'c' or to recapture a movement type 'a'."
                )

            if cv2.waitKey(5) == ord('c'):
                break

            #print(previousTime
            # Uncomment following line to show raw marks.
            #mark_detector.draw_marks(frame, marks, color=(0, 255, 0))

            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)

            # Stabilize the pose.
            stabile_pose = []
            pose_np = np.array(pose).flatten()
            for value, ps_stb in zip(pose_np, pose_stabilizers):
                ps_stb.update([value])
                stabile_pose.append(ps_stb.state[0])
            stabile_pose = np.reshape(stabile_pose, (-1, 3))

            # Uncomment following line to draw pose annotaion on frame.
            # pose_estimator.draw_annotation_box(
            #     frame, pose[0], pose[1], color=(255, 128, 128))

            # Uncomment following line to draw stabile pose annotaion on frame.
            #pose_estimator.draw_annotation_box(
            #    frame, stabile_pose[0], stabile_pose[1], color=(128, 255, 128))

        # if len(moves) > 1:
        #     cv2.putText(frame, moves[0], (450,70), font, 1, (0,0,0), 4)
        #     cv2.putText(frame, moves[1], (450,100), font, 1, (0,0,0), 4)
        #     cv2.putText(frame, moves[2], (450,130), font, 1, (0,0,0), 4)
        #     cv2.putText(frame, moves[3], (450,160), font, 1, (0,0,0), 4)

        cv2.putText(frame, headPoseDirection, (20, 70), font, 1, (0, 255, 0),
                    4)

        # Show preview.
        #cv2.namedWindow("", cv2.WINDOW_NORMAL)
        cv2.imshow("Preview", frame)
        #cv2.resizeWindow("preview", 5000,5000)
        if cv2.waitKey(5) == 27:
            break

    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()

    return moveClass
Example #26
0
    def __init__(self):
        """Subscribers"""
        rospy.Subscriber("/faces_images",
                         Faces,
                         self.callback_face,
                         queue_size=1)
        rospy.Subscriber("/any_detection",
                         Bool,
                         self.callback_flag,
                         queue_size=1)
        """Publishers """
        self.quaternion = rospy.Publisher("quaternion",
                                          PoseStamped,
                                          queue_size=1)
        self.q = PoseStamped()
        self.q.header.frame_id = "map"
        self.info = rospy.Publisher("driver_info", driver_info, queue_size=1)
        self.msg_driver = driver_info()
        """Node Parameters"""
        self.detector = dlib.get_frontal_face_detector()
        self.predictor = dlib.shape_predictor(
            os.path.join(os.path.dirname(sys.path[0]), 'scripts',
                         'shape_predictor_68_face_landmarks.dat'))
        self.model68 = (os.path.join(os.path.dirname(sys.path[0]), 'scripts',
                                     'model.txt'))
        self.size = (rospy.get_param('~img_heigth',
                                     480), rospy.get_param('~img_width', 640))
        self.data_buffernose_rs = []
        self.data_buffernose_gs = []
        self.data_buffernose_bs = []
        self.data_bufferforehead_rs = []
        self.data_bufferforehead_gs = []
        self.data_bufferforehead_bs = []
        self.data_buffernose_gray = []
        self.data_bufferforehead_gray = []
        self.matrix_v = []
        self.nose_ica_g = []
        self.fore_ica_g = []
        self.time_v = []
        self.bpm_a = 0
        self.window_hr = 0
        self.pulso_pantalla = 0
        self.pulso_guardado = 0
        self.pulso_adquirido = 0
        self.cont = 0
        self.cont2 = 0
        self.cont_yawn = 0
        self.flag = 0
        self.flag_300 = 0
        self.eye_thresh = 0.3
        self.mouth_thresh = 0.55
        self.num_frames = 2
        self.blink_counter = 0
        self.total = 0
        self.eyes_open = 0.0
        self.eyes_closed = 0.0
        self.perclos = 0.0
        self.mouth_status = False
        self.img = None
        self.flag_detec = None
        """Parameters for head pose estimation"""

        self.model_points_68 = self._get_full_model_points()
        img_size = (480, 640)
        self.size = img_size
        self.focal_length = self.size[1]
        self.camera_center = (self.size[1] / 2, self.size[0] / 2)
        self.camera_matrix = np.array(
            [[self.focal_length, 0, self.camera_center[0]],
             [0, self.focal_length, self.camera_center[1]], [0, 0, 1]],
            dtype="double")
        self.dist_coeefs = np.zeros((4, 1))
        self.r_vec = np.array([[0.01891013], [0.08560084], [-3.14392813]])
        self.t_vec = np.array([[-14.97821226], [-10.62040383],
                               [-2053.03596872]])

        self.pose_stabilizers = [
            Stabilizer(state_num=2,
                       measure_num=1,
                       cov_process=0.1,
                       cov_measure=0.1) for _ in range(6)
        ]

        self.main()
def main():
    """MAIN"""
    # Video source from webcam or video file.
    video_src = args.cam if args.cam is not None else args.video
    if video_src is None:
        print("Warning: video source not assigned, default webcam will be used.")
        video_src = 0

    cap = cv2.VideoCapture(video_src)
    if video_src == 0:
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    _, sample_frame = cap.read()

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face, args=(
        mark_detector, img_queue, box_queue,))
    box_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    if args.out != None:
        fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
        output_movie = cv2.VideoWriter(args.out, fourcc, 30, (width, height))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [Stabilizer(
        state_num=2,
        measure_num=1,
        cov_process=0.1,
        cov_measure=0.1) for _ in range(6)]

    tm = cv2.TickMeter()

    cnt = 0

    input_path = args.input_path
    listdir = os.listdir(input_path)
    for v_name in listdir:
        v_path = os.path.join(input_path, v_name)
        cap = cv2.VideoCapture(v_path)

        while True:
            # Read frame, crop it, flip it, suits your needs.
            frame_got, frame = cap.read()
            if frame_got is False:
                break

            # Crop it if frame is larger than expected.
            # frame = frame[0:480, 300:940]

            # If frame comes from webcam, flip it so it looks like a mirror.
            if video_src == 0:
                frame = cv2.flip(frame, 2)

            # Pose estimation by 3 steps:
            # 1. detect face;
            # 2. detect landmarks;
            # 3. estimate pose

            # Feed frame to image queue.
            img_queue.put(frame)

            # Get face from box queue.
            facebox = box_queue.get()

            if facebox is not None:
                # Detect landmarks from image of 128x128.
                face_img = frame[facebox[1]: facebox[3],
                           facebox[0]: facebox[2]]
                face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
                face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)

                tm.start()
                marks = mark_detector.detect_marks(face_img)
                tm.stop()

                # Convert the marks locations from local CNN to global image.
                marks *= (facebox[2] - facebox[0])
                marks[:, 0] += facebox[0]
                marks[:, 1] += facebox[1]

                # Uncomment following line to show raw marks.
                # mark_detector.draw_marks(frame, marks, color=(0, 255, 0))

                # Uncomment following line to show facebox.
                # mark_detector.draw_box(frame, [facebox])

                # Try pose estimation with 68 points.
                pose = pose_estimator.solve_pose_by_68_points(marks)

                # Stabilize the pose.
                steady_pose = []
                pose_np = np.array(pose).flatten()
                for value, ps_stb in zip(pose_np, pose_stabilizers):
                    ps_stb.update([value])
                    steady_pose.append(ps_stb.state[0])
                steady_pose = np.reshape(steady_pose, (-1, 3))

                # Uncomment following line to draw pose annotation on frame.
                # pose_estimator.draw_annotation_box(
                #     frame, pose[0], pose[1], color=(255, 128, 128))

                # Uncomment following line to draw stabile pose annotation on frame.
                pose_estimator.draw_annotation_box(
                    frame, steady_pose[0], steady_pose[1], color=(128, 255, 128))

                # Uncomment following line to draw head axes on frame.
                # pose_estimator.draw_axes(frame, steady_pose[0], steady_pose[1])

            # Show preview.
            # cv2.imshow("Preview", frame)
            # if cv2.waitKey(10) == 27:
            #     break
            if args.out != None:
                output_movie.write(frame)
            else:
                cv2.imshow("Preview", frame)

            cnt = cnt + 1
            if cnt % 100 == 0:
                print(str(cnt), flush=True)

    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()
    cv2.destroyAllWindows()
Example #28
0
def main():
    """MAIN"""
    # Video source from webcam or video file.
    video_src = args.cam if args.cam is not None else args.video
    if video_src is None:
        engine.say(
            "Warning: video source not assigned, default webcam will be used")
        engine.runAndWait()
        video_src = 0
    cap = cv2.VideoCapture(video_src)
    if video_src == 0:
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    _, sample_frame = cap.read()
    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()
    gaze = GazeTracking()
    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    tm = cv2.TickMeter()
    head_flag = 0
    gaze_flag = 0
    while True:
        # Read frame, crop it, flip it, suits your needs.
        frame_got, frame = cap.read()
        if frame_got is False:
            break

        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]
        #audio_record(AUDIO_OUTPUT, 3)
        #sphinx_recog(AUDIO_OUTPUT)
        # If frame comes from webcam, flip it so it looks like a mirror.
        if video_src == 0:
            frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)

        # Get face from box queue.
        facebox = box_queue.get()
        gaze.refresh(frame)
        frame = gaze.annotated_frame()
        text = ""
        if facebox is not None:
            # Detect landmarks from image of 128x128.
            face_img = frame[facebox[1]:facebox[3], facebox[0]:facebox[2]]
            face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            gray = cv2.cvtColor(face_img, cv2.COLOR_BGR2GRAY)
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
            rects = detector(gray, 0)
            tm.start()
            marks = mark_detector.detect_marks([face_img])
            tm.stop()
            #
            for rect in rects:
                # determine the facial landmarks for the face region, then
                # convert the facial landmark (x, y)-coordinates to a NumPy
                # array
                shape = predictor(gray, rect)
                shape = face_utils.shape_to_np(
                    shape)  #converting to NumPy Array矩阵运算
                mouth = shape[Start:End]
                leftEye = shape[lStart:lEnd]
                rightEye = shape[rStart:rEnd]
                leftEAR = eye_aspect_ratio(leftEye)  #眼睛长宽比
                rightEAR = eye_aspect_ratio(rightEye)
                ear = (leftEAR + rightEAR) / 2.0  #长宽比平均值
                lipdistance = lip_distance(shape)

                if (lipdistance > YAWN_THRESH):
                    #print(lipdistance)
                    flag0 += 1
                    print("yawning time: ", flag0)
                    if flag0 >= 40:
                        cv2.putText(frame, "Yawn Alert", (10, 150),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255),
                                    2)
                        cv2.putText(frame, "Yawn Alert", (220, 150),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255),
                                    2)
                        engine.say("don't yawn")
                        engine.runAndWait()
                        flag0 = 0
                else:
                    flag0 = 0

                if (ear < thresh):
                    flag += 1
                    print("eyes closing time: ", flag)
                    if flag >= frame_check:
                        cv2.putText(frame,
                                    "****************ALERT!****************",
                                    (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
                                    (0, 0, 255), 2)
                        cv2.putText(frame,
                                    "****************ALERT!****************",
                                    (10, 250), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
                                    (0, 0, 255), 2)
                        engine.say("open your eyes")
                        engine.runAndWait()
                        flag = 0
                else:
                    flag = 0
                if gaze.is_right():
                    print("Looking right")
                    text = "Looking right"
                elif gaze.is_left():
                    print("Looking left")
                    text = "Looking left"
                elif gaze.is_up():
                    text = "Looking up"
                else:
                    text = "Looking center"
                if text is not "Looking center":
                    gaze_flag += 1
                    if gaze_flag >= 20:
                        engine.say("look forward")
                        engine.runAndWait()
                        gaze_flag = 0
                else:
                    gaze_flag = 0
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # Uncomment following line to show raw marks.
            # mark_detector.draw_marks(
            #     frame, marks, color=(0, 255, 0))

            # Uncomment following line to show facebox.
            # mark_detector.draw_box(frame, [facebox])

            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)
            # get angles
            angles = pose_estimator.get_angles(pose[0], pose[1])
            if ((-8 > angles[0] or angles[0] > 8)
                    or (-8 > angles[1] or angles[1] > 8)):
                head_flag += 1
                if head_flag >= 40:
                    print(angles[0])
                    engine.say("please look ahead")
                    engine.runAndWait()
            else:
                head_flag = 0
            # pose_estimator.draw_info(frame, angles)

            # Stabilize the pose.
            steady_pose = []
            pose_np = np.array(pose).flatten()
            for value, ps_stb in zip(pose_np, pose_stabilizers):
                ps_stb.update([value])
                steady_pose.append(ps_stb.state[0])
            steady_pose = np.reshape(steady_pose, (-1, 3))

            # Uncomment following line to draw pose annotation on frame.
            pose_estimator.draw_annotation_box(frame,
                                               pose[0],
                                               pose[1],
                                               color=(255, 128, 128))

            # Uncomment following line to draw stabile pose annotation on frame.
            pose_estimator.draw_annotation_box(frame,
                                               steady_pose[0],
                                               steady_pose[1],
                                               color=(128, 255, 128))

            # Uncomment following line to draw head axes on frame.
            pose_estimator.draw_axes(frame, steady_pose[0], steady_pose[1])
            #pose_estimator.show_3d_model

        # Show preview.
        cv2.imshow("Preview", frame)
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break

    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()
def main():
    # construct the argument parse and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-m", "--draw-markers", action="store_true", default=False,
                    help="")
    ap.add_argument("-c", "--draw-confidence", action="store_true", default=False,
                    help="")
    ap.add_argument("-t", "--confidence-threshold", type=float, default=0.9,
                    help="")
    ap.add_argument("-p", "--draw-pose", action="store_false", default=True,
                    help="")
    ap.add_argument("-u", "--draw-unstable", action="store_true", default=False,
                    help="")
    ap.add_argument("-s", "--draw-segmented", action="store_true", default=False,
                    help="")
    args = vars(ap.parse_args())

    confidence_threshold = args["confidence_threshold"]

    """MAIN"""
    # Video source from webcam or video file.
    video_src = 0
    cam = cv2.VideoCapture(video_src)
    _, sample_frame = cam.read()

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)

    if isWindows():
        thread = threading.Thread(target=get_face, args=(mark_detector, confidence_threshold, img_queue, box_queue))
        thread.daemon = True
        thread.start()
    else:
        box_process = Process(target=get_face,
                              args=(mark_detector, confidence_threshold, img_queue, box_queue))
        box_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [Stabilizer(
        state_num=2,
        measure_num=1,
        cov_process=0.1,
        cov_measure=0.1) for _ in range(6)]

    while True:
        # Read frame, crop it, flip it, suits your needs.
        frame_got, frame = cam.read()
        if frame_got is False:
            break

        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]

        # If frame comes from webcam, flip it so it looks like a mirror.
        if video_src == 0:
            frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)

        # Get face from box queue.
        result = box_queue.get()

        if result is not None:
            if args["draw_confidence"]:
                mark_detector.face_detector.draw_result(frame, result)
            # unpack result
            facebox, confidence = result
            # fix facebox if needed
            if facebox[1] > facebox[3]:
                facebox[1] = 0
            if facebox[0] > facebox[2]:
                facebox[0] = 0
            # Detect landmarks from image of 128x128.
            face_img = frame[facebox[1]: facebox[3],
                             facebox[0]: facebox[2]]
            face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
            marks = mark_detector.detect_marks(face_img)

            # Convert the marks locations from local CNN to global image.
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # segment the image based on markers and facebox
            seg = Segmenter(facebox, marks, frame.shape[1], frame.shape[0])
            if args["draw_segmented"]:
                mark_detector.draw_box(frame, seg.getSegmentBBs())
                cv2.imshow("fg", seg.getSegmentJSON()["faceGrid"])

            if args["draw_markers"]:
                mark_detector.draw_marks(
                    frame, marks, color=(0, 255, 0))

            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)

            # Stabilize the pose.
            stable_pose = []
            pose_np = np.array(pose).flatten()
            for value, ps_stb in zip(pose_np, pose_stabilizers):
                ps_stb.update([value])
                stable_pose.append(ps_stb.state[0])
            stable_pose = np.reshape(stable_pose, (-1, 3))

            if args["draw_unstable"]:
                pose_estimator.draw_annotation_box(
                    frame, pose[0], pose[1], color=(255, 128, 128))

            if args["draw_pose"]:
                pose_estimator.draw_annotation_box(
                    frame, stable_pose[0], stable_pose[1], color=(128, 255, 128))

        # Show preview.
        cv2.imshow("Preview", frame)
        if cv2.waitKey(10) == 27:
            break

    # Clean up the multiprocessing process.
    if not isWindows():
        box_process.terminate()
        box_process.join()
def main():
    """MAIN"""
    # Video source from webcam or video file.
    video_src = 0
    cam = cv2.VideoCapture(video_src)
    _, sample_frame = cam.read()

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face, args=(
        mark_detector, img_queue, box_queue,))
    box_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [Stabilizer(
        state_num=2,
        measure_num=1,
        cov_process=0.1,
        cov_measure=0.1) for _ in range(6)]

    while True:
        # Read frame, crop it, flip it, suits your needs.
        frame_got, frame = cam.read()
        if frame_got is False:
            break

        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]

        # If frame comes from webcam, flip it so it looks like a mirror.
        if video_src == 0:
            frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)

        # Get face from box queue.
        facebox = box_queue.get()

        if facebox is not None:
            # Detect landmarks from image of 128x128.
            face_img = frame[facebox[1]: facebox[3],
                             facebox[0]: facebox[2]]
            face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
            marks = mark_detector.detect_marks(face_img)

            # Convert the marks locations from local CNN to global image.
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # Uncomment following line to show raw marks.
            # mark_detector.draw_marks(
            #     frame, marks, color=(0, 255, 0))

            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)

            # Stabilize the pose.
            stabile_pose = []
            pose_np = np.array(pose).flatten()
            for value, ps_stb in zip(pose_np, pose_stabilizers):
                ps_stb.update([value])
                stabile_pose.append(ps_stb.state[0])
            stabile_pose = np.reshape(stabile_pose, (-1, 3))

            # Uncomment following line to draw pose annotaion on frame.
            # pose_estimator.draw_annotation_box(
            #     frame, pose[0], pose[1], color=(255, 128, 128))

            # Uncomment following line to draw stabile pose annotaion on frame.
            pose_estimator.draw_annotation_box(
                frame, stabile_pose[0], stabile_pose[1], color=(128, 255, 128))

        # Show preview.
        cv2.imshow("Preview", frame)
        if cv2.waitKey(10) == 27:
            break

    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()