def test_train(): trainset = os.path.join(PROJECT_PATH, _get_random_str()) mod = os.path.join(PROJECT_PATH, "a.h5") config = { # fmt: off "video": { "path": VIDEO_PATH, "fps": 30, }, "output": ".", "extras": { "save_train_set": trainset, } } run(config) # train keras_train(trainset, model_path=mod, epochs=1)
def test_run_calc(): config = { # fmt: off "video": { "path": VIDEO_PATH, }, "output": ".", "calc": { "output": f"{_get_random_str()}.json", "operators": [{ "name": "calc_between_0_1", "calc_type": "between", "args": { "from_stage": "0", "to_stage": "1", }, }, { "name": "display everything", "calc_type": "display", }] } } run(config)
def test_run_validation(): # enum config = { # fmt: off "video": { "path": VIDEO_PATH, }, "classifier": { "classifier_type": "unknwonwonn", }, "output": ".", } try: run(config) except ValidationError: pass else: raise TypeError( "should raise an error if classifier_type is unexpected") config = { # fmt: off "video": { "path": VIDEO_PATH, }, "output": ".", "calc": { "output": f"{_get_random_str()}.json", "operators": [ { "name": "error_test", "calc_type": "unknwonww", }, ] } } try: run(config) except ValidationError: pass else: raise TypeError("should raise an error if calc_type is unexpected") config = { # fmt: off "video": { "path": VIDEO_PATH, }, "output": ".", "calc": { "output": f"{_get_random_str()}.json", "ignore_error": True, "operators": [ { "name": "error_test", "calc_type": "between", "args": { "from_stage": "0", # unexpected stage "to_stage": "999", } }, ] } } run(config)