def test_get_posterior_summary_variational(self):
        FILENAME = 'tests/test_output_variational.csv'
        assert os.path.isfile(FILENAME)

        result = get_posterior_summary(stan_read_csv(FILENAME))
        keys = ['mu', 'theta', 'tau']
        subkeys = ['mean', 'std', 'p5', 'p25', 'p50', 'p75', 'p95']

        self.assertListEqual(keys, list(result.keys()))
        for key in keys:
            self.assertListEqual(subkeys, list(result[key].keys()))

        assert_allclose(result['mu']['mean'], np.array([1.84578]))
        assert_allclose(result['mu']['std'], np.array([3.574338]))
        assert_allclose(result['mu']['p5'], np.array([-3.888642]))
        assert_allclose(result['mu']['p25'], np.array([-0.645503]), rtol=1e-6)
        assert_allclose(result['mu']['p50'], np.array([1.88189]))
        assert_allclose(result['mu']['p75'], np.array([4.229085]))
        assert_allclose(result['mu']['p95'], np.array([7.662146]))

        assert_allclose(result['theta']['mean'],
                        np.array([4.64194, 2.73732,
                                  -0.087907, 2.4676, -0.007914,
                                  1.06119, 5.76268, 1.77541]), rtol=1e-4)
        assert_allclose(result['tau']['mean'], np.array([9.59118]))
    def test_get_posterior_summary_variational(self):
        FILENAME = 'tests/test_output_variational.csv'
        assert os.path.isfile(FILENAME)

        result = get_posterior_summary(stan_read_csv(FILENAME))
        keys = ['mu', 'theta', 'tau']
        subkeys = ['mean', 'std', 'p5', 'p25', 'p50', 'p75', 'p95']

        self.assertListEqual(keys, list(result.keys()))
        for key in keys:
            self.assertListEqual(subkeys, list(result[key].keys()))

        assert_allclose(result['mu']['mean'], np.array([1.84578]))
        assert_allclose(result['mu']['std'], np.array([3.574338]))
        assert_allclose(result['mu']['p5'], np.array([-3.888642]))
        assert_allclose(result['mu']['p25'], np.array([-0.645503]), rtol=1e-6)
        assert_allclose(result['mu']['p50'], np.array([1.88189]))
        assert_allclose(result['mu']['p75'], np.array([4.229085]))
        assert_allclose(result['mu']['p95'], np.array([7.662146]))

        assert_allclose(result['theta']['mean'],
                        np.array([
                            4.64194, 2.73732, -0.087907, 2.4676, -0.007914,
                            1.06119, 5.76268, 1.77541
                        ]),
                        rtol=1e-4)
        assert_allclose(result['tau']['mean'], np.array([9.59118]))
    def test_read_csv_optimize(self):
        FILENAME = 'tests/test_output_optimize.csv'
        assert os.path.isfile(FILENAME)

        result = stan_read_csv(FILENAME)
        keys = ['lp__', 'mu', 'theta', 'tau']

        self.assertListEqual(keys, list(result.keys()))
        self.assertEqual(result['lp__'].shape, (1,))
        self.assertEqual(result['mu'].shape, (1,))
        self.assertEqual(result['theta'].shape, (8,))
        self.assertEqual(result['tau'].shape, (1,))
    def test_get_posterior_summary_sample(self):
        FILENAME = 'tests/test_output_sample.csv'
        assert os.path.isfile(FILENAME)

        result = get_posterior_summary(stan_read_csv(FILENAME))
        keys = [
            'lp__', 'accept_stat__', 'stepsize__', 'treedepth__',
            'n_leapfrog__', 'divergent__', 'energy__', 'mu', 'theta', 'tau'
        ]
        subkeys = ['mean', 'std', 'p5', 'p25', 'p50', 'p75', 'p95']

        self.assertListEqual(keys, list(result.keys()))
        for key in keys:
            self.assertListEqual(subkeys, list(result[key].keys()))

        assert_allclose(result['mu']['mean'], np.array([8.073827]))
        assert_allclose(result['mu']['std'], np.array([5.25104899]))
        assert_allclose(result['mu']['p5'], np.array([-0.4602165]))
        assert_allclose(result['mu']['p25'], np.array([4.81581]))
        assert_allclose(result['mu']['p50'], np.array([8.11732]))
        assert_allclose(result['mu']['p75'], np.array([11.429175]))
        assert_allclose(result['mu']['p95'], np.array([16.19353]))

        assert_allclose(
            result['theta']['mean'],
            np.array([
                12.419558, 7.816183, 5.874417, 7.385253, 4.876437, 5.872688,
                11.357495, 8.674288
            ]))
        assert_allclose(
            result['theta']['std'],
            np.array([
                8.61228728, 6.68721892, 7.91427956, 7.39105258, 6.32559623,
                7.03889131, 6.97848441, 8.82055328
            ]))
        assert_allclose(
            result['theta']['p5'],
            np.array([
                0.1057379, -2.863044, -8.5084845, -5.1880425, -5.63355,
                -6.229635, 0.9704559, -4.523796
            ]))
        assert_allclose(
            result['theta']['p50'],
            np.array([
                11.26905, 7.880545, 6.40003, 7.525235, 5.318285, 6.118715,
                10.94805, 8.87839
            ]))
        assert_allclose(
            result['theta']['p95'],
            np.array([
                28.27765, 19.00013, 17.481145, 19.8772, 14.34689, 16.32348,
                24.068015, 23.40457
            ]))
Example #5
0
    def test_read_csv_optimize(self):
        FILENAME = 'tests/test_output_optimize.csv'
        assert os.path.isfile(FILENAME)

        result = stan_read_csv(FILENAME)
        keys = ['lp__', 'mu', 'theta', 'tau']

        self.assertListEqual(keys, list(result.keys()))
        self.assertEqual(result['lp__'].shape, (1, ))
        self.assertEqual(result['mu'].shape, (1, ))
        self.assertEqual(result['theta'].shape, (8, ))
        self.assertEqual(result['tau'].shape, (1, ))
    def test_get_posterior_estimates_variational(self):
        FILENAME = 'tests/test_output_variational.csv'
        assert os.path.isfile(FILENAME)

        result = get_posterior_estimates(stan_read_csv(FILENAME))
        keys = ['mu', 'theta', 'tau']

        self.assertListEqual(keys, list(result.keys()))
        assert_allclose(result['mu'], np.array([1.84578]))
        assert_allclose(result['theta'],
                        np.array([4.64194, 2.73732,
                                  -0.087907, 2.4676, -0.007914,
                                  1.06119, 5.76268, 1.77541]), rtol=1e-4)
        assert_allclose(result['tau'], np.array([9.59118]))
    def test_read_csv_sample(self):
        FILENAME = 'tests/test_output_sample.csv'
        assert os.path.isfile(FILENAME)

        result = stan_read_csv(FILENAME)
        keys = ['lp__', 'accept_stat__', 'stepsize__', 'treedepth__',
                'n_leapfrog__', 'divergent__', 'energy__', 'mu', 'theta',
                'tau']

        self.assertListEqual(keys, list(result.keys()))
        self.assertEqual(result['lp__'].shape, (1000, 1))
        self.assertEqual(result['mu'].shape, (1000, 1))
        self.assertEqual(result['theta'].shape, (1000, 8))
        self.assertEqual(result['tau'].shape, (1000, 1))
Example #8
0
    def test_read_csv_sample(self):
        FILENAME = 'tests/test_output_sample.csv'
        assert os.path.isfile(FILENAME)

        result = stan_read_csv(FILENAME)
        keys = [
            'lp__', 'accept_stat__', 'stepsize__', 'treedepth__',
            'n_leapfrog__', 'divergent__', 'energy__', 'mu', 'theta', 'tau'
        ]

        self.assertListEqual(keys, list(result.keys()))
        self.assertEqual(result['lp__'].shape, (1000, 1))
        self.assertEqual(result['mu'].shape, (1000, 1))
        self.assertEqual(result['theta'].shape, (1000, 8))
        self.assertEqual(result['tau'].shape, (1000, 1))
    def test_get_posterior_estimates_optimize(self):
        FILENAME = 'tests/test_output_optimize.csv'
        assert os.path.isfile(FILENAME)

        result = get_posterior_estimates(stan_read_csv(FILENAME))
        keys = ['lp__', 'mu', 'theta', 'tau']

        self.assertListEqual(keys, list(result.keys()))
        assert_allclose(result['lp__'], np.array([276.575]))
        assert_allclose(result['mu'], np.array([0.765896]))
        assert_allclose(result['theta'],
                        np.array([0.765896, 0.765896,
                                  0.765896, 0.765896, 0.765896,
                                  0.765896, 0.765896, 0.765896]))
        assert_allclose(result['tau'], np.array([4.335870e-16]))
    def test_get_posterior_estimates_variational(self):
        FILENAME = 'tests/test_output_variational.csv'
        assert os.path.isfile(FILENAME)

        result = get_posterior_estimates(stan_read_csv(FILENAME))
        keys = ['mu', 'theta', 'tau']

        self.assertListEqual(keys, list(result.keys()))
        assert_allclose(result['mu'], np.array([1.84578]))
        assert_allclose(result['theta'],
                        np.array([
                            4.64194, 2.73732, -0.087907, 2.4676, -0.007914,
                            1.06119, 5.76268, 1.77541
                        ]),
                        rtol=1e-4)
        assert_allclose(result['tau'], np.array([9.59118]))
    def test_get_posterior_estimates_optimize(self):
        FILENAME = 'tests/test_output_optimize.csv'
        assert os.path.isfile(FILENAME)

        result = get_posterior_estimates(stan_read_csv(FILENAME))
        keys = ['lp__', 'mu', 'theta', 'tau']

        self.assertListEqual(keys, list(result.keys()))
        assert_allclose(result['lp__'], np.array([276.575]))
        assert_allclose(result['mu'], np.array([0.765896]))
        assert_allclose(
            result['theta'],
            np.array([
                0.765896, 0.765896, 0.765896, 0.765896, 0.765896, 0.765896,
                0.765896, 0.765896
            ]))
        assert_allclose(result['tau'], np.array([4.335870e-16]))
    def test_get_posterior_estimates_sample(self):
        FILENAME = 'tests/test_output_sample.csv'
        assert os.path.isfile(FILENAME)

        result = get_posterior_estimates(stan_read_csv(FILENAME))
        keys = ['lp__', 'accept_stat__', 'stepsize__', 'treedepth__',
                'n_leapfrog__', 'divergent__', 'energy__', 'mu', 'theta',
                'tau']

        self.assertListEqual(keys, list(result.keys()))
        assert_allclose(result['lp__'], np.array([-18.94640541]))
        assert_allclose(result['mu'], np.array([8.073827]))
        assert_allclose(result['theta'],
                        np.array([12.419558, 7.816183,
                                  5.874417, 7.385253, 4.876437,
                                  5.872688, 11.357495, 8.674288]))
        assert_allclose(result['tau'], np.array([7.735637]))
    def test_read_csv_variational(self):
        FILENAME = 'tests/test_output_variational.csv'
        assert os.path.isfile(FILENAME)

        result = stan_read_csv(FILENAME)
        keys = ['mean_pars', 'sampled_pars']
        self.assertListEqual(keys, list(result.keys()))

        keys_param = ['mu', 'theta', 'tau']
        self.assertListEqual(keys_param, list(result['mean_pars'].keys()))
        self.assertListEqual(keys_param, list(result['sampled_pars'].keys()))

        self.assertEqual(result['mean_pars']['mu'].shape, (1,))
        self.assertEqual(result['mean_pars']['theta'].shape, (8,))
        self.assertEqual(result['mean_pars']['tau'].shape, (1,))

        self.assertEqual(result['sampled_pars']['mu'].shape, (1000, 1))
        self.assertEqual(result['sampled_pars']['theta'].shape, (1000, 8))
        self.assertEqual(result['sampled_pars']['tau'].shape, (1000, 1))
Example #14
0
    def test_read_csv_variational(self):
        FILENAME = 'tests/test_output_variational.csv'
        assert os.path.isfile(FILENAME)

        result = stan_read_csv(FILENAME)
        keys = ['mean_pars', 'sampled_pars']
        self.assertListEqual(keys, list(result.keys()))

        keys_param = ['mu', 'theta', 'tau']
        self.assertListEqual(keys_param, list(result['mean_pars'].keys()))
        self.assertListEqual(keys_param, list(result['sampled_pars'].keys()))

        self.assertEqual(result['mean_pars']['mu'].shape, (1, ))
        self.assertEqual(result['mean_pars']['theta'].shape, (8, ))
        self.assertEqual(result['mean_pars']['tau'].shape, (1, ))

        self.assertEqual(result['sampled_pars']['mu'].shape, (1000, 1))
        self.assertEqual(result['sampled_pars']['theta'].shape, (1000, 8))
        self.assertEqual(result['sampled_pars']['tau'].shape, (1000, 1))
    def test_get_posterior_summary_sample(self):
        FILENAME = 'tests/test_output_sample.csv'
        assert os.path.isfile(FILENAME)

        result = get_posterior_summary(stan_read_csv(FILENAME))
        keys = ['lp__', 'accept_stat__', 'stepsize__', 'treedepth__',
                'n_leapfrog__', 'divergent__', 'energy__', 'mu', 'theta',
                'tau']
        subkeys = ['mean', 'std', 'p5', 'p25', 'p50', 'p75', 'p95']

        self.assertListEqual(keys, list(result.keys()))
        for key in keys:
            self.assertListEqual(subkeys, list(result[key].keys()))

        assert_allclose(result['mu']['mean'], np.array([8.073827]))
        assert_allclose(result['mu']['std'], np.array([5.25104899]))
        assert_allclose(result['mu']['p5'], np.array([-0.4602165]))
        assert_allclose(result['mu']['p25'], np.array([4.81581]))
        assert_allclose(result['mu']['p50'], np.array([8.11732]))
        assert_allclose(result['mu']['p75'], np.array([11.429175]))
        assert_allclose(result['mu']['p95'], np.array([16.19353]))

        assert_allclose(result['theta']['mean'],
                        np.array([12.419558, 7.816183,
                                  5.874417, 7.385253, 4.876437,
                                  5.872688, 11.357495, 8.674288]))
        assert_allclose(result['theta']['std'],
                        np.array([8.61228728, 6.68721892,
                                  7.91427956, 7.39105258, 6.32559623,
                                  7.03889131, 6.97848441, 8.82055328]))
        assert_allclose(result['theta']['p5'],
                        np.array([0.1057379, -2.863044,
                                  -8.5084845, -5.1880425, -5.63355,
                                  -6.229635, 0.9704559, -4.523796]))
        assert_allclose(result['theta']['p50'],
                        np.array([11.26905, 7.880545,
                                  6.40003, 7.525235, 5.318285,
                                  6.118715, 10.94805, 8.87839]))
        assert_allclose(result['theta']['p95'],
                        np.array([28.27765, 19.00013,
                                  17.481145, 19.8772, 14.34689,
                                  16.32348, 24.068015, 23.40457]))
    def test_get_posterior_estimates_sample(self):
        FILENAME = 'tests/test_output_sample.csv'
        assert os.path.isfile(FILENAME)

        result = get_posterior_estimates(stan_read_csv(FILENAME))
        keys = [
            'lp__', 'accept_stat__', 'stepsize__', 'treedepth__',
            'n_leapfrog__', 'divergent__', 'energy__', 'mu', 'theta', 'tau'
        ]

        self.assertListEqual(keys, list(result.keys()))
        assert_allclose(result['lp__'], np.array([-18.94640541]))
        assert_allclose(result['mu'], np.array([8.073827]))
        assert_allclose(
            result['theta'],
            np.array([
                12.419558, 7.816183, 5.874417, 7.385253, 4.876437, 5.872688,
                11.357495, 8.674288
            ]))
        assert_allclose(result['tau'], np.array([7.735637]))
Example #17
0
    def test_variational_invalid(self):
        FILENAME = 'tests/test_output_variational_invalid.csv'
        assert os.path.isfile(FILENAME)

        with self.assertRaises(RuntimeError):
            stan_read_csv(FILENAME)
    def test_no_method(self):
        FILENAME = 'tests/test_output_no_method.csv'
        assert os.path.isfile(FILENAME)

        with self.assertRaises(RuntimeError):
            stan_read_csv(FILENAME)
Example #19
0
    def test_no_method(self):
        FILENAME = 'tests/test_output_no_method.csv'
        assert os.path.isfile(FILENAME)

        with self.assertRaises(RuntimeError):
            stan_read_csv(FILENAME)
    def test_variational_invalid(self):
        FILENAME = 'tests/test_output_variational_invalid.csv'
        assert os.path.isfile(FILENAME)

        with self.assertRaises(RuntimeError):
            stan_read_csv(FILENAME)