def render_label_pred_example(): model_path = path_model2d() model = StarDist2D(None, name=model_path.name, basedir=str(model_path.parent)) img, y_gt = real_image2d() x = normalize(img, 1, 99.8) y, _ = model.predict_instances(x) im = render_label_pred(y_gt, y, img=x) import matplotlib.pyplot as plt plt.figure(1, figsize=(12, 4)) plt.subplot(1, 4, 1) plt.imshow(x) plt.title("img") plt.subplot(1, 4, 2) plt.imshow(render_label(y_gt, img=x)) plt.title("gt") plt.subplot(1, 4, 3) plt.imshow(render_label(y, img=x)) plt.title("pred") plt.subplot(1, 4, 4) plt.imshow(im) plt.title("tp (green) fp (red) fn(blue)") plt.tight_layout() plt.show() return im
def render_label_pred_example(model2d): model = model2d img, y_gt = real_image2d() x = normalize(img, 1, 99.8) y, _ = model.predict_instances(x) im = render_label_pred(y_gt, y , img = x) import matplotlib.pyplot as plt plt.figure(1, figsize = (12,4)) plt.subplot(1,4,1);plt.imshow(x);plt.title("img") plt.subplot(1,4,2);plt.imshow(render_label(y_gt, img = x));plt.title("gt") plt.subplot(1,4,3);plt.imshow(render_label(y, img = x));plt.title("pred") plt.subplot(1,4,4);plt.imshow(im);plt.title("tp (green) fp (red) fn(blue)") plt.tight_layout() plt.show() return im
def render_label_example(model2d): model = model2d img, y_gt = real_image2d() x = normalize(img, 1, 99.8) y, _ = model.predict_instances(x) # im = render_label(y,img = x, alpha = 0.3, alpha_boundary=1, cmap = (.3,.4,0)) im = render_label(y,img = x, alpha = 0.3, alpha_boundary=1) import matplotlib.pyplot as plt plt.figure(1) plt.imshow(im) plt.show() return im
def render_label_example(): model_path = path_model2d() model = StarDist2D(None, name=model_path.name, basedir=str(model_path.parent)) img, y_gt = real_image2d() x = normalize(img, 1, 99.8) y, _ = model.predict_instances(x) # im = render_label(y,img = x, alpha = 0.3, alpha_boundary=1, cmap = (.3,.4,0)) im = render_label(y, img=x, alpha=0.3, alpha_boundary=1) import matplotlib.pyplot as plt plt.figure(1) plt.imshow(im) plt.show() return im