Example #1
0
def get_table3(df):

    ### regressions:
    rslt = smf.ols(formula="stdgrade ~ treat + pol1+ pol1t",
                   data=df,
                   weights=df["kwgt"]).fit(
                       cov_type='cluster',
                       cov_kwds={'groups': df["studentid"]})
    rslt1 = rslt

    formula2 = "stdgrade ~ treat + treatmentvol + treatmentfor + volcourse + forcourse + pol1 + pol1t + pol1vol + pol1tvol + pol1for + pol1tfor"
    rslt = smf.ols(formula=formula2, data=df, weights=df["kwgt"]).fit(
        cov_type='cluster', cov_kwds={'groups': df["studentid"]})
    rslt2 = rslt

    ### Table stargazer:
    stargazer = Stargazer([rslt1, rslt2])
    stargazer.custom_columns(["column 1", "column 4"], [1, 1])
    stargazer.title("Table 3 - Effects on standardized grades")
    stargazer.show_model_numbers(False)
    stargazer.significant_digits(2)
    stargazer.covariate_order(["treat", "treatmentvol", "treatmentfor"])
    stargazer.rename_covariates({
        "treat":
        "1st-year GPA is below 7",
        "treatmentvol":
        "Attendance is voluntary x treatment",
        "treatmentfor":
        "Absence is penalized x treatment"
    })
    stargazer.show_degrees_of_freedom(False)
    stargazer.add_line('Fixed Effects', ['No', 'No'])

    return stargazer
Example #2
0
def Appendix_Table_3(df):

    df_short_g = pd.DataFrame({
        "beliefadjustment_normalized":
        df[df["dummynews_goodbad"] == 0][df[df["dummynews_goodbad"] ==
                                            0]['treatgroup'] ==
                                         4]['beliefadjustment_normalized'],
        "beliefadjustment_bayes_norm":
        df[df["dummynews_goodbad"] == 0][df[df["dummynews_goodbad"] == 0]
                                         ['treatgroup'] == 4]
        ['beliefadjustment_bayes_norm']
    })
    model_ols = smf.ols(
        formula="beliefadjustment_normalized ~ beliefadjustment_bayes_norm",
        data=df_short_g)
    reg_s_1 = model_ols.fit(cov_type='HC1')

    df_short_b = pd.DataFrame({
        "beliefadjustment_normalized":
        df[df["dummynews_goodbad"] == 1][df[df["dummynews_goodbad"] ==
                                            1]['treatgroup'] ==
                                         4]['beliefadjustment_normalized'],
        "beliefadjustment_bayes_norm":
        df[df["dummynews_goodbad"] == 1][df[df["dummynews_goodbad"] == 1]
                                         ['treatgroup'] == 4]
        ['beliefadjustment_bayes_norm']
    })
    model_ols = smf.ols(
        formula="beliefadjustment_normalized ~ beliefadjustment_bayes_norm",
        data=df_short_b)
    reg_s_2 = model_ols.fit(cov_type='HC1')

    df["interact_negative_bayes"] = df["beliefadjustment_bayes_norm"] * df[
        "dummynews_goodbad"]

    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ beliefadjustment_bayes_norm + dummynews_goodbad + interact_negative_bayes",
        data=df[df['treatgroup'] == 4])
    reg_s_3 = model_ols.fit(cov_type='HC1')

    Appendix_Table_3 = Stargazer([reg_s_1, reg_s_2, reg_s_3])
    Appendix_Table_3.title('Table 8: Belief Adjustment in the Short-Run')
    Appendix_Table_3.dependent_variable_name('Belief Adjustment')
    Appendix_Table_3.custom_columns([
        'Positive Information', 'Negative Information',
        'Difference-in-difference'
    ], [1, 1, 1])

    return Appendix_Table_3
Example #3
0
def get_table_4and7(dependent_var, data):
    '''
    argument:dependent variable, dataset
    return:either table4 or table7 depending on the input dataset
    '''
    model_1 = sm_api.OLS(data[dependent_var],
                         sm_api.add_constant(data["state"])).fit()
    model_2 = sm_api.OLS(
        data[dependent_var],
        sm_api.add_constant(data[["state", "bk", "kfc", "roys",
                                  "co_owned"]])).fit()
    model_3 = sm_api.OLS(data[dependent_var],
                         sm_api.add_constant(data["GAP"])).fit()
    model_4 = sm_api.OLS(
        data[dependent_var],
        sm_api.add_constant(data[["GAP", "bk", "kfc", "roys",
                                  "co_owned"]])).fit()
    model_5 = sm_api.OLS(
        data[dependent_var],
        sm_api.add_constant(data[[
            "GAP", "bk", "kfc", "roys", "co_owned", "southj", "centralj",
            "pa1", "pa2"
        ]])).fit()
    Table = Stargazer([model_1, model_2, model_3, model_4, model_5])
    Table.rename_covariates({
        'state': 'New Jersey dummy',
        'GAP': 'Initial wage GAP'
    })
    Table.add_line('Controls for chain and ownership',
                   ['No', 'Yes', 'No', 'Yes', 'Yes'])
    Table.add_line('Controls for region', ['No', 'No', 'No', 'No', 'Yes'])
    F2 = model_2.f_test(
        '(state = 0), (bk = 0), (kfc = 0), (roys =0),(co_owned= 0),(const=0)'
    ).pvalue.round(3)
    F4 = model_4.f_test(
        '(GAP = 0), (bk = 0), (kfc = 0), (roys =0),(co_owned= 0),(const=0)'
    ).pvalue.round(3)
    F5 = model_5.f_test(
        '(GAP = 0), (bk = 0), (kfc = 0), (roys =0),(co_owned= 0),(const=0), (southj=0),(centralj=0),(pa1=0),(pa2=0)'
    ).pvalue.round(3)
    if dependent_var == "change_in_FTE":
        Table.add_line('Probability value for controls',
                       ['-', F2, '-', F4, F5])
    Table.title("Models for " + dependent_var)
    Table.covariate_order(['state', 'GAP'])
    print("The mean and standard deviation of the dependent variable are",
          data[dependent_var].mean(), "and", data[dependent_var].std(),
          ",respectively.")

    return Table
def df_table12(df, name):
    df_table12 = df[[
        f'{name}_C2', f'{name}_instrument_C2_thresh', f'{name}_I', 'trust',
        'democ', 'lnpopulation', 'lnArea', 'lnGDP_pc', 'protestants',
        'muslims', 'catholics', 'latitude', 'LOEnglish', 'LOGerman',
        'LOSocialist', 'LOScandin', 'mtnall'
    ]].dropna(axis=0)

    df_demo = df_table12[df_table12.democ > 1]

    dep1 = df_table12['trust']
    dep2 = df_demo['trust']

    exo1 = sm.add_constant(df_table12[f'{name}_C2'])
    exo2 = sm.add_constant(df_table12[[
        f'{name}_C2', f'{name}_I', 'lnpopulation', 'lnArea', 'lnGDP_pc',
        'protestants', 'muslims', 'catholics', 'latitude', 'LOEnglish',
        'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])
    exo3 = sm.add_constant(df_demo[[
        f'{name}_C2', f'{name}_I', 'lnpopulation', 'lnArea', 'lnGDP_pc',
        'protestants', 'muslims', 'catholics', 'latitude', 'LOEnglish',
        'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])

    ins1 = sm.add_constant(df_table12[f'{name}_instrument_C2_thresh'])
    ins2 = sm.add_constant(df_table12[[
        f'{name}_instrument_C2_thresh', f'{name}_I', 'lnpopulation', 'lnArea',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])
    ins3 = sm.add_constant(df_demo[[
        f'{name}_instrument_C2_thresh', f'{name}_I', 'lnpopulation', 'lnArea',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])

    reg1 = sm.OLS(dep1, exo1).fit(cov_type='HC1')
    reg2 = sm.OLS(dep1, exo2).fit(cov_type='HC1')
    reg3 = sm.OLS(dep2, exo3).fit(cov_type='HC1')
    reg4 = IV2SLS(dep1, exo1, ins1).fit()
    reg5 = IV2SLS(dep1, exo2, ins2).fit()
    reg6 = IV2SLS(dep2, exo3, ins3).fit()

    stargazer = Stargazer([reg1, reg2, reg3, reg4, reg5, reg6])
    stargazer.covariate_order([f'{name}_C2', f'{name}_I'])
    stargazer.rename_covariates({
        f'{name}_C2':
        'Segregation $\hat{S}$ ('
        f'{name}'
        ')',
        f'{name}_I':
        'Fractionalization $F$ ('
        f'{name}'
        ')'
    })

    stargazer.custom_columns(['OLS', 'OLS', 'OLS', '2SLS', '2SLS', '2SLS'],
                             [1, 1, 1, 1, 1, 1])
    stargazer.add_line('Controls', ['No', 'Yes', 'Yes', 'No', 'Yes', 'Yes'])
    stargazer.add_line('Sample',
                       ['Full', 'Full', 'Democ', 'Full', 'Full', 'Democ'])

    if name == 'ethnicity':
        stargazer.title('Panel A. Ethnicity')
        return stargazer

    else:
        stargazer.title('Panel B. Language')
        return stargazer
def table10_11(df, name, democ):

    full_x = [
        f'{name}_I', f'{name}_C2', 'lnpopulation', 'lnGDP_pc', 'protestants',
        'muslims', 'catholics', 'latitude', 'LOEnglish', 'LOGerman',
        'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]
    ins = [
        f'{name}_I', f'{name}_instrument_C2_thresh', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]

    df_10_11_1 = df[[
        f'{name}_C2', f'{name}_I', f'{name}_instrument_C2_thresh',
        'lnpopulation', 'lnGDP_pc', 'protestants', 'muslims', 'catholics',
        'latitude', 'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin',
        'democ', 'mtnall', 'icrg_qog'
    ]].dropna(axis=0)
    df_10_11_2 = df[[
        f'{name}_C2', f'{name}_I', f'{name}_instrument_C2_thresh',
        'lnpopulation', 'lnGDP_pc', 'protestants', 'muslims', 'catholics',
        'latitude', 'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin',
        'democ', 'mtnall', 'ef_regul', 'ef_corruption', 'ef_property_rights'
    ]].dropna(axis=0)
    df_10_11_3 = df[[
        f'{name}_C2', f'{name}_I', f'{name}_instrument_C2_thresh',
        'lnpopulation', 'lnGDP_pc', 'protestants', 'muslims', 'catholics',
        'latitude', 'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin',
        'democ', 'mtnall', 'taxevas'
    ]].dropna(axis=0)

    if democ == 'democracy':
        df_10_11_1 = df_10_11_1[df_10_11_1.democ >= 1]
        df_10_11_2 = df_10_11_2[df_10_11_2.democ >= 1]
        df_10_11_3 = df_10_11_3[df_10_11_3.democ >= 1]

        x1 = sm.add_constant(df_10_11_1[full_x])
        x2 = sm.add_constant(df_10_11_2[full_x])
        x3 = sm.add_constant(df_10_11_3[full_x])

        ins1 = sm.add_constant(df_10_11_1[ins])
        ins2 = sm.add_constant(df_10_11_2[ins])
        ins3 = sm.add_constant(df_10_11_3[ins])

    else:
        x1 = sm.add_constant(df_10_11_1[[f'{name}_I', f'{name}_C2']])
        x2 = sm.add_constant(df_10_11_2[[f'{name}_I', f'{name}_C2']])
        x3 = sm.add_constant(df_10_11_3[[f'{name}_I', f'{name}_C2']])

        ins1 = sm.add_constant(
            df_10_11_1[[f'{name}_I', f'{name}_instrument_C2_thresh']])
        ins2 = sm.add_constant(
            df_10_11_2[[f'{name}_I', f'{name}_instrument_C2_thresh']])
        ins3 = sm.add_constant(
            df_10_11_3[[f'{name}_I', f'{name}_instrument_C2_thresh']])

    y1 = df_10_11_1['icrg_qog']
    y2 = df_10_11_2['ef_corruption']
    y3 = df_10_11_2['ef_property_rights']
    y4 = df_10_11_2['ef_regul']
    y5 = df_10_11_3['taxevas']

    est1 = sm.OLS(y1, x1).fit(cov_type='HC1')
    est2 = IV2SLS(y1, x1, ins1).fit()
    est3 = sm.OLS(y2, x2).fit(cov_type='HC1')
    est4 = IV2SLS(y2, x2, ins2).fit()
    est5 = sm.OLS(y3, x2).fit(cov_type='HC1')
    est6 = IV2SLS(y3, x2, ins2).fit()
    est7 = sm.OLS(y4, x2).fit(cov_type='HC1')
    est8 = IV2SLS(y4, x2, ins2).fit()
    est9 = sm.OLS(y5, x3).fit(cov_type='HC1')
    est10 = IV2SLS(y5, x3, ins3).fit()

    stargazer = Stargazer(
        [est1, est2, est3, est4, est5, est6, est7, est8, est9, est10])
    stargazer.custom_columns([
        'ICRG quality of gov', 'EF Corruption', 'EF Property rights',
        'EF Regulation', 'Tax eva'
    ], [2, 2, 2, 2, 2])
    stargazer.show_model_numbers(False)
    stargazer.covariate_order([f'{name}_C2', f'{name}_I'])
    stargazer.rename_covariates({
        f'{name}_C2':
        'Segregation $\hat{S}$ ('
        f'{name}'
        ')',
        f'{name}_I':
        'Fractionalization $F$ ('
        f'{name}'
        ')'
    })
    stargazer.add_line('Method', [
        'OLS', '2SLS', 'OLS', '2SLS', 'OLS', '2SLS', 'OLS', '2SLS', 'OLS',
        '2SLS'
    ])

    if democ == 'democracy':
        stargazer.title('Panel B. Democracies sample, all controls')
        return stargazer

    else:
        stargazer.title('Panel A. Full sample, no additional controls')
        return stargazer
def table6(df, alternative=True):

    df_6E = df[[
        'ethnicity_C2', 'ethnicity_I', 'ethnicity_C',
        'ethnicity_instrument_C_thresh', 'ethnicity_instrument_C2_thresh',
        'lnpopulation', 'lnGDP_pc', 'protestants', 'muslims', 'catholics',
        'latitude', 'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin',
        'democ', 'mtnall', 'RulLaw', 'country'
    ]].dropna(axis=0)
    df_6L = df[[
        'language_C2', 'language_I', 'language_C',
        'language_instrument_C_thresh', 'language_instrument_C2_thresh',
        'lnpopulation', 'lnGDP_pc', 'protestants', 'muslims', 'catholics',
        'latitude', 'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin',
        'democ', 'mtnall', 'RulLaw', 'country'
    ]].dropna(axis=0)
    df_6R = df[[
        'religion_C2', 'religion_I', 'religion_C',
        'religion_instrument_C_thresh', 'religion_instrument_C2_thresh',
        'lnpopulation', 'lnGDP_pc', 'protestants', 'muslims', 'catholics',
        'latitude', 'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin',
        'democ', 'mtnall', 'RulLaw', 'country'
    ]].dropna(axis=0)

    df_6E_demo = df_6E[df_6E.democ >= 1]
    df_6L_demo = df_6L[df_6L.democ >= 1]
    df_6R_demo = df_6R[df_6R.democ >= 1]

    x1 = sm.add_constant(df_6E[[
        'ethnicity_instrument_C2_thresh', 'ethnicity_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])
    x2 = sm.add_constant(df_6L[[
        'language_instrument_C2_thresh', 'language_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])
    x3 = sm.add_constant(df_6R[[
        'religion_instrument_C2_thresh', 'religion_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'democ', 'mtnall'
    ]])
    x4 = sm.add_constant(df_6E_demo[[
        'ethnicity_instrument_C2_thresh', 'ethnicity_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])
    x5 = sm.add_constant(df_6L_demo[[
        'language_instrument_C2_thresh', 'language_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])
    x6 = sm.add_constant(df_6R_demo[[
        'religion_instrument_C2_thresh', 'religion_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'democ', 'mtnall'
    ]])

    y1 = df_6E['ethnicity_C2']
    y2 = df_6L['language_C2']
    y3 = df_6R['religion_C2']
    y4 = df_6E_demo['ethnicity_C2']
    y5 = df_6L_demo['language_C2']
    y6 = df_6R_demo['religion_C2']

    est1 = sm.OLS(y1, x1).fit(cov_type='HC1')
    est2 = sm.OLS(y2, x2).fit(cov_type='HC1')
    est3 = sm.OLS(y3, x3).fit(cov_type='HC1')
    est4 = sm.OLS(y4, x4).fit(cov_type='HC1')
    est5 = sm.OLS(y5, x5).fit(cov_type='HC1')
    est6 = sm.OLS(y6, x6).fit(cov_type='HC1')

    x1a = sm.add_constant(df_6E[[
        'ethnicity_instrument_C_thresh', 'ethnicity_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])
    x2a = sm.add_constant(df_6L[[
        'language_instrument_C_thresh', 'language_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])
    x3a = sm.add_constant(df_6R[[
        'religion_instrument_C_thresh', 'religion_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'democ', 'mtnall'
    ]])
    x4a = sm.add_constant(df_6E_demo[[
        'ethnicity_instrument_C_thresh', 'ethnicity_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])
    x5a = sm.add_constant(df_6L_demo[[
        'language_instrument_C_thresh', 'language_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]])
    x6a = sm.add_constant(df_6R_demo[[
        'religion_instrument_C_thresh', 'religion_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'democ', 'mtnall'
    ]])

    y1a = df_6E['ethnicity_C']
    y2a = df_6L['language_C']
    y3a = df_6R['religion_C']
    y4a = df_6E_demo['ethnicity_C']
    y5a = df_6L_demo['language_C']
    y6a = df_6R_demo['religion_C']

    est1a = sm.OLS(y1a, x1a).fit(cov_type='HC1')
    est2a = sm.OLS(y2a, x2a).fit(cov_type='HC1')
    est3a = sm.OLS(y3a, x3a).fit(cov_type='HC1')
    est4a = sm.OLS(y4a, x4a).fit(cov_type='HC1')
    est5a = sm.OLS(y5a, x5a).fit(cov_type='HC1')
    est6a = sm.OLS(y6a, x6a).fit(cov_type='HC1')

    df_6Lb = df_6L.set_index('country')
    df_6Lb_demo = df_6L_demo.set_index('country')

    x2b = sm.add_constant(df_6Lb[[
        'language_instrument_C_thresh', 'language_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]].drop(index='usa'))

    x5b = sm.add_constant(df_6Lb_demo[[
        'language_instrument_C_thresh', 'language_I', 'lnpopulation',
        'lnGDP_pc', 'protestants', 'muslims', 'catholics', 'latitude',
        'LOEnglish', 'LOGerman', 'LOSocialist', 'LOScandin', 'democ', 'mtnall'
    ]].drop(index='usa'))
    y2b = df_6Lb['language_C'].drop(index='usa')
    y5b = df_6Lb_demo['language_C'].drop(index='usa')

    est2b = sm.OLS(y2b, x2b).fit(cov_type='HC1')
    est5b = sm.OLS(y5b, x5b).fit(cov_type='HC1')

    stargazer = Stargazer([est1, est2, est3, est4, est5, est6])
    stargazer_a = Stargazer([est1a, est2a, est3a, est4a, est5a, est6a])
    stargazer_b = Stargazer([est2b, est5b])

    stargazer.covariate_order([
        'ethnicity_instrument_C2_thresh', 'ethnicity_I',
        'language_instrument_C2_thresh', 'language_I',
        'religion_instrument_C2_thresh', 'religion_I'
    ])
    stargazer.rename_covariates({
        'ethnicity_instrument_C2_thresh': 'Instrument E',
        'ethnicity_I': '$F$ (ethnicity)',
        'language_instrument_C2_thresh': 'Instrument L',
        'language_I': '$F$ (language)',
        'religion_instrument_C2_thresh': 'Instrument R',
        'religion_I': '$F$ (religion)'
    })
    stargazer.custom_columns([
        'E$\hat{S}$', 'L$\hat{S}$', 'R$\hat{S}$', 'E$\hat{S}$', 'L$\hat{S}$',
        'R$\hat{S}$'
    ], [1, 1, 1, 1, 1, 1])
    stargazer.show_model_numbers(False)
    stargazer.add_line(
        'Sample',
        ['Full', 'Full', 'Full', 'Democracy', 'Democracy', 'Democracy'])
    stargazer.title('Panel A. Segregation index $\hat{S}$')

    stargazer_a.covariate_order([
        'ethnicity_instrument_C_thresh', 'ethnicity_I',
        'language_instrument_C_thresh', 'language_I',
        'religion_instrument_C_thresh', 'religion_I'
    ])
    stargazer_a.rename_covariates({
        'ethnicity_instrument_C_thresh': 'Instrument E',
        'ethnicity_I': '$F$ (ethnicity)',
        'language_instrument_C_thresh': 'Instrument L',
        'language_I': '$F$ (language)',
        'religion_instrument_C_thresh': 'Instrument R',
        'religion_I': '$F$ (religion)'
    })
    stargazer_a.custom_columns([
        'E$\\tilde{S}$', 'L$\\tilde{S}$', 'R$\\tilde{S}$', 'E$\\tilde{S}$',
        'L$\\tilde{S}$', 'R$\\tilde{S}$'
    ], [1, 1, 1, 1, 1, 1])
    stargazer_a.show_model_numbers(False)
    stargazer_a.add_line(
        'Sample',
        ['Full', 'Full', 'Full', 'Democracy', 'Democracy', 'Democracy'])
    stargazer_a.title('Panel B. Segregation index $\\tilde{S}$')

    stargazer_b.covariate_order(['language_instrument_C_thresh', 'language_I'])
    stargazer_b.rename_covariates({
        'language_instrument_C_thresh': 'Instrument L',
        'language_I': '$F$ (language)'
    })
    stargazer_b.custom_columns(['L$\\tilde{S}$', 'L$\\tilde{S}$'], [1, 1])
    stargazer_b.show_model_numbers(False)
    stargazer_b.add_line('Sample', ['Full', 'Democracy'])
    stargazer_b.title(
        'Panel C. Segregation index $\\tilde{S}$ for language with sample excluding the US'
    )

    return [stargazer, stargazer_a, stargazer_b]
Example #7
0
def Main_Table_1(df):

    df_good = pd.DataFrame({
        "beliefadjustment_normalized":
        df[df["dummynews_goodbad"] == 0]['beliefadjustment_normalized'],
        "dummytreat_direct1month":
        df[df["dummynews_goodbad"] == 0]['dummytreat_direct1month'],
        "rank":
        df[df["dummynews_goodbad"] == 0]['rank'],
        "beliefadjustment_bayes_norm":
        df[df["dummynews_goodbad"] == 0]['beliefadjustment_bayes_norm']
    })
    model_ols = smf.ols(
        formula="beliefadjustment_normalized ~ dummytreat_direct1month",
        data=df_good)
    reg_1 = model_ols.fit(cov_type='HC1')
    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ dummytreat_direct1month + rank + beliefadjustment_bayes_norm",
        data=df_good)
    reg_2 = model_ols.fit(cov_type='HC1')

    df_bad = pd.DataFrame({
        "beliefadjustment_normalized":
        df[df["dummynews_goodbad"] == 1]['beliefadjustment_normalized'],
        "dummytreat_direct1month":
        df[df["dummynews_goodbad"] == 1]['dummytreat_direct1month'],
        "rank":
        df[df["dummynews_goodbad"] == 1]['rank'],
        "beliefadjustment_bayes_norm":
        df[df["dummynews_goodbad"] == 1]['beliefadjustment_bayes_norm']
    })
    model_ols = smf.ols(
        formula="beliefadjustment_normalized ~ dummytreat_direct1month",
        data=df_bad)
    reg_3 = model_ols.fit(cov_type='HC1')
    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ dummytreat_direct1month + rank + beliefadjustment_bayes_norm",
        data=df_bad)
    reg_4 = model_ols.fit(cov_type='HC1')

    #Generating interaction term
    df["interact_direct1month"] = df["dummytreat_direct1month"] * df[
        "dummynews_goodbad"]

    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ dummytreat_direct1month + dummynews_goodbad + interact_direct1month",
        data=df)
    reg_5 = model_ols.fit(cov_type='HC1')
    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ dummytreat_direct1month + dummynews_goodbad + rank + interact_direct1month + beliefadjustment_bayes_norm",
        data=df)
    reg_6 = model_ols.fit(cov_type='HC1')

    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ dummytreat_direct1month + dummynews_goodbad + interact_direct1month + rankdummy1 + rankdummy2 + rankdummy3 + rankdummy4 + rankdummy5 + rankdummy6 + rankdummy7 + rankdummy8 + rankdummy9 + rankdummy1_interact + rankdummy2_interact + rankdummy3_interact + rankdummy4_interact + rankdummy5_interact + rankdummy6_interact + rankdummy7_interact + rankdummy8_interact + rankdummy9_interact",
        data=df)
    reg_7 = model_ols.fit(cov_type='HC1')
    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ dummytreat_direct1month + dummynews_goodbad + interact_direct1month + beliefadjustment_bayes_norm + rankdummy1 + rankdummy2 + rankdummy3 + rankdummy4 + rankdummy5 + rankdummy6 + rankdummy7 + rankdummy8 + rankdummy9 + rankdummy1_interact + rankdummy2_interact + rankdummy3_interact + rankdummy4_interact + rankdummy5_interact + rankdummy6_interact + rankdummy7_interact + rankdummy8_interact + rankdummy9_interact",
        data=df)
    reg_8 = model_ols.fit(cov_type='HC1')

    Main_Table_1 = Stargazer(
        [reg_1, reg_2, reg_3, reg_4, reg_5, reg_6, reg_7, reg_8])
    Main_Table_1.title(
        'Table 1 - Belief Adjustment: Direct versus One Month Later')
    Main_Table_1.dependent_variable_name('Normalized Belief Adjustment - ')
    Main_Table_1.custom_columns([
        'Positive Information', 'Negative Information',
        'Difference-in-difference',
        'Difference-in-difference with rank fixed effects'
    ], [2, 2, 2, 2])

    return Main_Table_1
Example #8
0
def Appendix_Table_1(df):
    df_good = pd.DataFrame({
        "beliefadjustment_normalized":
        df[df["dummynews_goodbad_h"] == 0]['beliefadjustment_normalized'],
        "dummytreat_direct1month":
        df[df["dummynews_goodbad_h"] == 0]['dummytreat_direct1month'],
        "rank":
        df[df["dummynews_goodbad_h"] == 0]['rank'],
        "beliefadjustment_bayes_norm":
        df[df["dummynews_goodbad_h"] == 0]['beliefadjustment_bayes_norm']
    })
    model_ols = smf.ols(
        formula="beliefadjustment_normalized ~ dummytreat_direct1month",
        data=df_good)
    reg_1 = model_ols.fit(cov_type='HC1')
    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ dummytreat_direct1month + rank + beliefadjustment_bayes_norm",
        data=df_good)
    reg_2 = model_ols.fit(cov_type='HC1')
    df_bad = pd.DataFrame({
        "beliefadjustment_normalized":
        df[df["dummynews_goodbad_h"] == 1]['beliefadjustment_normalized'],
        "dummytreat_direct1month":
        df[df["dummynews_goodbad_h"] == 1]['dummytreat_direct1month'],
        "rank":
        df[df["dummynews_goodbad_h"] == 1]['rank'],
        "beliefadjustment_bayes_norm":
        df[df["dummynews_goodbad_h"] == 1]['beliefadjustment_bayes_norm']
    })
    model_ols = smf.ols(
        formula="beliefadjustment_normalized ~ dummytreat_direct1month",
        data=df_bad)
    reg_3 = model_ols.fit(cov_type='HC1')
    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ dummytreat_direct1month + rank + beliefadjustment_bayes_norm",
        data=df_bad)
    reg_4 = model_ols.fit(cov_type='HC1')

    #Generating interaction term
    df["interact_direct1month"] = df["dummytreat_direct1month"] * df[
        "dummynews_goodbad"]

    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ dummytreat_direct1month + dummynews_goodbad_h + interact_direct1month",
        data=df)
    reg_5 = model_ols.fit(cov_type='HC1')
    model_ols = smf.ols(
        formula=
        "beliefadjustment_normalized ~ dummytreat_direct1month + dummynews_goodbad_h + rank + interact_direct1month + beliefadjustment_bayes_norm",
        data=df)
    reg_6 = model_ols.fit(cov_type='HC1')

    Appendix_Table_1 = Stargazer([reg_1, reg_2, reg_3, reg_4, reg_5, reg_6])
    Appendix_Table_1.title(
        'Appendix Table 1 - Belief Adjustment: Direct versus One Month Later')
    Appendix_Table_1.dependent_variable_name('Normalized Belief Adjustment - ')
    Appendix_Table_1.custom_columns([
        'Positive Information', 'Negative Information',
        'Difference-in-difference'
    ], [2, 2, 2])

    return Appendix_Table_1
model2 = ols("cnt ~ temp_celsius + windspeed_kh", data=wbr).fit()
model2.summary2()

# Independent variable = hum
wbr.hum.hist()
model1_h = ols("cnt ~ hum", data=wbr).fit()
model1_h.summary2()

# Independent variables = temp_celsius + windspeed_kh + hum
model3 = ols("cnt ~ temp_celsius + windspeed_kh + hum", data=wbr).fit()
model3.summary2()

# Compare all models
stargazer = Stargazer([model1_t, model2, model3])
stargazer
stargazer.title("Table 1. A model of bicycle demand in Washington D.C.")
stargazer

#####################
# REGRESSION WITH DUMMIES

# Independent variable = workingday
model1_wd = ols("cnt ~ workingday", data=wbr).fit()
model1_wd.summary2()

# Independent variables = temp_celsius + windspeed_kh + hum + workingday
model4 = ols("cnt ~ temp_celsius + windspeed_kh + hum + workingday",
             data=wbr).fit()
model4.summary2()
# The workingday variable is not significative -> but we mantain it just in case