def testWgtCopula(self): """! @brief Test ability to construct copula given samples with unequal weights. Compose two bivariate gauss dists, one with positive and one with negative depencence. Sample from dists. Assign large sample weights to positive gauss and low sample weights to neg gauss. Combine weighted samples into a single "X" shaped distribution. Refit weighted samples and ensure positive depencence """ # construct gaussian margins; mu={0, 0}, sd={1.0, 2} marg1 = Uvm("gauss")(1e-3, 1.) marg2 = Uvm("gauss")(1e-3, 2.) # construct gaussian copula positive dep cop1 = Copula("gauss") cop1.fittedParams = [0.7] # construct gaussian copula neg dep cop2 = Copula("gauss") cop2.fittedParams = [-0.7] # draw 1000 samples from each model n = 1000 rvs1 = marg1.rvs(size=n) rvs2 = marg2.rvs(size=n) x1, y1 = cop1.sampleScale(rvs1, rvs2, marg1.cdf, marg2.cdf) x2, y2 = cop2.sampleScale(rvs1, rvs2, marg1.cdf, marg2.cdf) # assign weights to each gauss sample group cop1_wgts = np.ones(n) * 0.95 cop2_wgts = np.ones(n) * 0.05 # combine both gauss models into dbl gauss model x = np.append(x1, x2) y = np.append(y1, y2) wgts = np.append(cop1_wgts, cop2_wgts) # plot data = pd.DataFrame([x, y]).T matrixPairPlot(data, weights=wgts, savefig='x_gauss_original.png') # fit copula to weighted data copModel = PairCopula(x, y, wgts) copModel.copulaTournament() # verify that a positive dep copula was produced with a # dep parameter of slightly less than 0.7 x_wt, y_wt = copModel.copulaModel.sampleScale(rvs1, rvs2, marg1.cdf, marg2.cdf) self.assertTrue(copModel.copulaModel.kTau() > 0.) self.assertTrue((copModel.copulaModel.fittedParams[0] > 0.) & (copModel.copulaModel.fittedParams[0] < 0.7)) # plot data = pd.DataFrame([x_wt, y_wt]).T matrixPairPlot(data, savefig='x_gauss_weighted_fit.png')
def testWgtResampledCopula(self): """! @brief Test ability to construct copula given samples with unequal weights using a resampling strat """ np.random.seed(123) # construct gaussian margins; mu={0, 0}, sd={1.0, 2} # marg1 = Uvm("gauss")(1e-3, 1.) marg1 = norm(loc=1e-3, scale=1.0) # marg2 = Uvm("gauss")(1e-3, 2.) marg2 = norm(loc=1e-3, scale=2.0) # construct gaussian copula positive dep cop1 = Copula("gauss") cop1.fittedParams = [0.7] # construct gaussian copula neg dep cop2 = Copula("gauss") cop2.fittedParams = [-0.7] # draw 1000 samples from each model n = 1000 x1, y1 = cop1.sampleScale(marg1, marg2, n) x2, y2 = cop2.sampleScale(marg1, marg2, n) # assign weights to each gauss sample group cop1_wgts = np.ones(n) * 0.95 cop2_wgts = np.ones(n) * 0.05 # combine both gauss models into dbl gauss model x = np.append(x1, x2) y = np.append(y1, y2) wgts = np.append(cop1_wgts, cop2_wgts) # fit copula to weighted data copModel = PairCopula(x, y, wgts, resample=10) copModel.copulaTournament() resampled_data = pd.DataFrame([copModel.x, copModel.y]).T matrixPairPlot(resampled_data, savefig='x_gauss_resampled.png') # verify that a positive dep copula was produced with a # dep parameter of slightly less than 0.7 x_wt, y_wt = copModel.copulaModel.sampleScale(marg1, marg2, n) self.assertTrue(copModel.copulaModel.kTau() > 0.) self.assertTrue((copModel.copulaModel.fittedParams[0] > 0.) & (copModel.copulaModel.fittedParams[0] < 0.7)) # plot data = pd.DataFrame([x_wt, y_wt]).T matrixPairPlot(data, savefig='x_gauss_resampled_fit.png')
def testGumbelRotate(self): expectedKtaus = {0: 0.87499, 1: -0.87499, 2: 0.87499, 3: -0.87499} shapeParam = 8.0 family = {'gumbel': 0, 'gumbel-90': 1, 'gumbel-180': 2, 'gumbel-270': 3} for rotation, expectedKtau in iteritems(expectedKtaus): gumbel = Copula("gumbel", rotation) u, v = gumbel.sample(40000, *(shapeParam,)) g = sns.jointplot(u, v, stat_func=kendalltau) g.savefig("gumbel_sample_pdf_" + str(rotation) + ".png") gumbel.fittedParams = (shapeParam,) c_kTau = gumbel.kTau() # check kTau self.assertAlmostEqual(c_kTau, expectedKtau, delta=0.001) # compute rank corr coeff from resampled data gumbel_model = PairCopula(u, v, family=family) gumbel_model.copulaTournament() print(gumbel_model.copulaParams) self.assertTrue("gumbel" in gumbel_model.copulaModel.name) # Ensure fitted shape parameter is same as original self.assertAlmostEqual(shapeParam, gumbel_model.copulaParams[1][0], delta=0.2) self.assertEqual(rotation, gumbel_model.copulaParams[3]) # Ensure kTau is nearly the same from resampled data self.assertAlmostEqual(c_kTau, gumbel_model.copulaModel.kTau(), delta=0.02) # fit to resampled data u_model, v_model = gumbel_model.copulaModel.sample(40000) gumbel_refit = PairCopula(u_model, v_model, family=family) gumbel_refit.copulaTournament() u_resample, v_resample = gumbel_refit.copulaModel.sample(4000) self.assertAlmostEqual(c_kTau, gumbel_refit.copulaModel.kTau(), delta=0.05) # plot resampled data g_resample = sns.jointplot(u_resample, v_resample, stat_func=kendalltau) g_resample.savefig("gumbel_resample_pdf_" + str(rotation) + ".png")
def testKtauFitGauss(self): # Load matlab data set stocks = np.loadtxt(dataDir + 'stocks.csv', delimiter=',') x = stocks[:, 0] y = stocks[:, 1] stockModel = PairCopula(x, y) # Try to fit all copula stockModel.copulaTournament() # Check gaussian copula parameters for correctness self.assertAlmostEqual(stockModel.copulaParams[1][0], 0.73874003, 4) # Obtain Ktau kTauFitted = stockModel.copulaModel.kTau() # Use fitted kTau to specify a new copula stockModelRefit = Copula("gauss") # Fit gauss copula param given kTau fittedParam = stockModelRefit.fitKtau(kTauFitted)[0] print("Fitted Ktau = %f" % kTauFitted) print("Expected Theta = %f" % 0.738740) print("Computed Theta = %f" % fittedParam) # check result self.assertAlmostEqual(0.73874003, fittedParam, delta=0.01)
def setTrialCopula(self, family={}): if not family: family = self.defaultFamily self.trialFamily = family self.copulaBank = {} for name, rotation in iteritems(self.trialFamily): self.copulaBank[name] = Copula(name, rotation)
def testGaussRotate(self): np.random.seed(123) shapes = {0: 0.7777777, 1: -0.7777777, 2: 0.7777777, 3: -0.7777777} family = {'gauss': 0} for rotation, shapeParam in iteritems(shapes): gauss = Copula("gauss", 0) u, v = gauss.sample(10000, *(shapeParam,)) g = sns.jointplot(u, v, stat_func=kendalltau) g.savefig("gauss_sample_pdf_" + str(rotation) + ".png") gauss.fittedParams = (shapeParam,) c_kTau = gauss.kTau() # compute rank corr coeff from resampled data gauss_model = PairCopula(u, v, family=family) gauss_model.copulaTournament() print(gauss_model.copulaParams) self.assertTrue("gauss" in gauss_model.copulaModel.name) # Ensure fitted shape parameter is same as original self.assertAlmostEqual(shapeParam, gauss_model.copulaParams[1][0], delta=0.2) # Ensure kTau is nearly the same from resampled data self.assertAlmostEqual(c_kTau, gauss_model.copulaModel.kTau(), delta=0.02) # fit to resampled data u_model, v_model = gauss_model.copulaModel.sample(10000) gauss_refit = PairCopula(u_model, v_model, family=family) gauss_refit.copulaTournament() u_resample, v_resample = gauss_refit.copulaModel.sample(2000) self.assertAlmostEqual(c_kTau, gauss_refit.copulaModel.kTau(), delta=0.05) self.assertAlmostEqual(shapeParam, gauss_refit.copulaParams[1][0], delta=0.2) # plot resampled data g_resample = sns.jointplot(u_resample, v_resample, stat_func=kendalltau) g_resample.savefig("gauss_resample_pdf_" + str(rotation) + ".png")
def testClaytonSample(self): # 0 deg clayton00 = Copula("clayton", 0) u00, v00 = clayton00.sample(10000, *(0.5, )) clayton00.fittedParams = (0.5, ) c00_kTau = clayton00.kTau() # check kTau self.assertAlmostEqual(c00_kTau, 0.2) # compute rank corr coeff from resampled data clayton00_model = PairCopula(u00, v00) clayton00_model.copulaTournament() # check that clayton copula won since # we seeded with samples from a clayton df self.assertTrue("clayton" in clayton00_model.copulaModel.name) # Ensure kTau is nearly the same from resampled data self.assertAlmostEqual(c00_kTau, clayton00_model.copulaModel.kTau(), delta=0.02) # 90 deg clayton90 = Copula("clayton", 1) u90, v90 = clayton90.sample(10000, *(0.5, )) clayton90.fittedParams = (0.5, ) c90_kTau = clayton90.kTau() self.assertAlmostEqual(c90_kTau, -0.2) # compute rank corr coeff from resampled data clayton90_model = PairCopula(u90, v90, family={"clayton": 1}) clayton90_model.copulaTournament() # check that clayton copula won since # we seeded with samples from a clayton df self.assertTrue("clayton" in clayton90_model.copulaModel.name) self.assertTrue(1 == clayton90_model.copulaModel.rotation) # Ensure kTau is nearly the same from resampled data self.assertAlmostEqual(c90_kTau, clayton90_model.copulaModel.kTau(), delta=0.02) # 180 deg clayton180 = Copula("clayton", 2) u180, v180 = clayton180.sample(1000, *(0.5, )) # 270 deg clayton270 = Copula("clayton", 3) u270, v270 = clayton270.sample(1000, *(0.5, ))
def testClaytonRotate(self): expectedKtaus = { 0: 0.7777777, 1: -0.7777777, 2: 0.7777777, 3: -0.7777777 } shapeParam = 7.0 family = { 'gauss': 0, 'clayton': 0, 'clayton-90': 1, 'clayton-180': 2, 'clayton-270': 3, 'gumbel': 0, 'gumbel-90': 1, 'gumbel-180': 2, 'gumbel-270': 3, } for rotation, expectedKtau in iteritems(expectedKtaus): clayton = Copula("clayton", rotation) u, v = clayton.sample(40000, *(shapeParam, )) g = sns.jointplot(u, v) g.savefig("clayton_sample_pdf_" + str(rotation) + ".png") clayton.fittedParams = (shapeParam, ) c_kTau = clayton.kTau() # check kTau self.assertAlmostEqual(c_kTau, expectedKtau, delta=0.001) # compute rank corr coeff from resampled data clayton_model = PairCopula(u, v, family=family) clayton_model.copulaTournament() print(clayton_model.copulaParams) self.assertTrue("clayton" in clayton_model.copulaModel.name) # Ensure fitted shape parameter is same as original self.assertAlmostEqual(shapeParam, clayton_model.copulaParams[1][0], delta=0.2) self.assertEqual(rotation, clayton_model.copulaParams[3]) # Ensure kTau is nearly the same from resampled data self.assertAlmostEqual(c_kTau, clayton_model.copulaModel.kTau(), delta=0.02) # fit to resampled data u_model, v_model = clayton_model.copulaModel.sample(10000) clayton_refit = PairCopula(u_model, v_model, family=family) clayton_refit.copulaTournament() u_resample, v_resample = clayton_refit.copulaModel.sample(1000) self.assertAlmostEqual(c_kTau, clayton_refit.copulaModel.kTau(), delta=0.05) # plot resampled data g_resample = sns.jointplot(u_resample, v_resample) g_resample.savefig("clayton_resample_pdf_" + str(rotation) + ".png")
def testFrankSample(self): # 0 deg frank00 = Copula("frank", 0) u00, v00 = frank00.sample(30000, *(8.0, )) frank00.fittedParams = (8.0, ) c00_kTau = frank00.kTau() # check kTau print(c00_kTau) self.assertAlmostEqual(c00_kTau, 0.602619667, 6) # compute rank corr coeff from resampled data frank00_model = PairCopula(u00, v00, family={"frank": 0}) frank00_model.copulaTournament() print(frank00_model.copulaParams) # check that frank copula won since # we seeded with samples from a frank df self.assertTrue("frank" in frank00_model.copulaModel.name) # Ensure kTau is nearly the same from resampled data self.assertAlmostEqual(c00_kTau, frank00_model.copulaModel.kTau(), delta=0.02) # 90 deg frank90 = Copula("frank", 1) u90, v90 = frank90.sample(30000, *(8.0, )) frank90.fittedParams = (8.0, ) c90_kTau = frank90.kTau() self.assertAlmostEqual(c90_kTau, -0.602619667, 6) # compute rank corr coeff from resampled data frank90_model = PairCopula(u90, v90, family={"frank": 1}) frank90_model.copulaTournament() print(frank90_model.copulaParams) # check that frank copula won since # we seeded with samples from a frank df self.assertTrue("frank" in frank90_model.copulaModel.name) # Ensure kTau is nearly the same from resampled data self.assertAlmostEqual(c90_kTau, frank90_model.copulaModel.kTau(), delta=0.02)
def testGumbelSample(self): # TODO: TEST FAILS FOR SMALL GUMBEL PARAMETER VALUES # 0 deg gumbel00 = Copula("gumbel", 0) u00, v00 = gumbel00.sample(10000, *(8.0, )) gumbel00.fittedParams = (8.0, ) c00_kTau = gumbel00.kTau() # check kTau self.assertAlmostEqual(c00_kTau, 0.8749999999999, 6) # compute rank corr coeff from resampled data gumbel00_model = PairCopula(u00, v00, family={"gumbel": 0}) gumbel00_model.copulaTournament() print(gumbel00_model.copulaParams) # check that gumbel copula won since # we seeded with samples from a gumbel df self.assertTrue("gumbel" in gumbel00_model.copulaModel.name) # Ensure kTau is nearly the same from resampled data self.assertAlmostEqual(c00_kTau, gumbel00_model.copulaModel.kTau(), delta=0.04) # 90 deg gumbel90 = Copula("gumbel", 1) u90, v90 = gumbel90.sample(10000, *(8.0, )) gumbel90.fittedParams = (8.0, ) c90_kTau = gumbel90.kTau() self.assertAlmostEqual(c90_kTau, -0.87499999999, 6) # compute rank corr coeff from resampled data gumbel90_model = PairCopula(u90, v90, family={"gumbel": 1}) gumbel90_model.copulaTournament() print(gumbel90_model.copulaParams) # check that gumbel copula won since # we seeded with samples from a gumbel df self.assertTrue("gumbel" in gumbel90_model.copulaModel.name) # Ensure kTau is nearly the same from resampled data self.assertAlmostEqual(c90_kTau, gumbel90_model.copulaModel.kTau(), delta=0.04)
def testFrankRotate(self): expectedKtaus = { 0: 0.602619667, 1: -0.602619667, 2: 0.602619667, 3: -0.602619667 } shapeParam = 8.0 family = { 'gauss': 0, 'frank': 0, 'frank-90': 1, 'frank-180': 2, 'frank-270': 3, } for rotation, expectedKtau in iteritems(expectedKtaus): frank = Copula("frank", rotation) u, v = frank.sample(10000, *(shapeParam, )) g = sns.jointplot(u, v, stat_func=kendalltau) g.savefig("frank_sample_pdf_" + str(rotation) + ".png") frank.fittedParams = (shapeParam, ) c_kTau = frank.kTau() # check kTau self.assertAlmostEqual(c_kTau, expectedKtau, delta=0.001) # compute rank corr coeff from resampled data frank_model = PairCopula(u, v, family=family) frank_model.copulaTournament() print(frank_model.copulaParams) self.assertTrue("frank" in frank_model.copulaModel.name) # Ensure refitted shape parameter is same as original self.assertAlmostEqual(shapeParam, frank_model.copulaParams[1][0], delta=0.2) # Ensure kTau is nearly the same from resampled data self.assertAlmostEqual(c_kTau, frank_model.copulaModel.kTau(), delta=0.02) # fit to resampled data u_model, v_model = frank_model.copulaModel.sample(10000) frank_refit = PairCopula(u_model, v_model, family=family) frank_refit.copulaTournament() u_resample, v_resample = frank_refit.copulaModel.sample(1000) self.assertAlmostEqual(c_kTau, frank_refit.copulaModel.kTau(), delta=0.05) # plot resampled data g_resample = sns.jointplot(u_resample, v_resample, stat_func=kendalltau) g_resample.savefig("frank_resample_pdf_" + str(rotation) + ".png")
def compute_kc_metric(self, copula, log=True, log_dir='Kc_logs'): """! @brief Compute l2 norm of differences between the empirical Kc function and the fitted copula's Kc function. @param copula starvine.bvcopula.copula.copula_base.CopulaBase instance """ # rotate current data into the proposed copula orientation if copula.name in ["gauss", "t" ] and copula.rotation == 0 and self.empKTau_ < 0: # force positive correlation rt_UU, rt_VV = self.rotate_data(self.UU, self.VV, -1) else: rt_UU, rt_VV = self.rotate_data(self.UU, self.VV, copula.rotation) # compute emperical Kc on the rotated data rt_t_emp, rt_kc_emp = jit_empKc(rt_UU, rt_VV) # fit the un-rotated copula base_copula = Copula(copula.name, 0) base_copula.fitMLE(rt_UU, rt_VV, *( None, None, ), weights=self.weights) mask = ((rt_t_emp > 0.005) & (rt_t_emp < 1.0)) kc_metric = [] for i in range(4): fitted_kc = base_copula.kC(rt_t_emp[mask]) kc_metric.append(np.linalg.norm(fitted_kc - rt_kc_emp[mask])) if log: if not os.path.exists(log_dir): os.makedirs(log_dir) np.savetxt(log_dir + '/kc_log_' + str(base_copula.name) + "_" + str(copula.rotation) + '.txt', np.array([rt_t_emp[mask], fitted_kc, rt_kc_emp[mask]]).T, header="Kendalls fn log for Copula: " + str(base_copula.name) + "_" + str(copula.rotation)) return np.average(kc_metric)
def setTrialCopula(self, family): self.trialFamily = family self.copulaBank = {} for name, rotation in iteritems(self.trialFamily): self.copulaBank[name] = Copula(name, rotation)
def testKtauFitGauss(self): # Load matlab data set stocks = np.loadtxt(dataDir + 'stocks.csv', delimiter=',') x = stocks[:, 0] y = stocks[:, 1] stockModel = PairCopula(x, y) # Try to fit all copula stockModel.copulaTournament() # Check gaussian copula parameters for correctness self.assertAlmostEqual(stockModel.copulaParams[1], 0.73874003, 4) # Obtain Ktau kTauFitted = stockModel.copulaModel.kTau() # Use fitted kTau to specify a new copula stockModelRefit = Copula("gauss") # Fit gauss copula param given kTau fittedParam = stockModelRefit.fitKtau(kTauFitted)[0] print("Fitted Ktau = %f" % kTauFitted) print("Expected Theta = %f" % 0.738740) print("Computed Theta = %f" % fittedParam) # Compute kendall's function t_in = np.linspace(0.01, 0.99, 20) k_c = stockModelRefit.kC(t_in) print("Gauss Kendall's function") print(t_in) print(k_c) # And specify gumbel model stockModelRefit = Copula("gumbel") fittedParam = stockModelRefit.fitKtau(kTauFitted)[0] k_c_gumbel = stockModelRefit.kC(t_in) print("Gumbel Kendall's function") print(t_in) print(k_c_gumbel) print("Fitted Gumbel Param= %f" % fittedParam) # expected gubel param for ktau=0.9, 10.0 # expected gubel param for ktau=0.8, 5.0 # expected gubel param for ktau=0.7, 3.33 # check that k_c is monotonic self.assertTrue(k_c[0] < k_c[1]) self.assertTrue(k_c[-2] < k_c[-1]) # Compute emperical kendall's function t_emp, kc_emp = stockModel.empKc() # plot try: import pylab as pl pl.figure() pl.plot(t_in, t_in - k_c, label="gauss") pl.plot(t_in, t_in - k_c_gumbel, label="gumbel") pl.plot(t_emp, t_emp - kc_emp, label="emperical") pl.xlabel("t") pl.ylabel("t - Kc(t)") pl.legend() pl.savefig("ktau_function_plot.png") pl.close() except: pass