Example #1
0
def sif(coord_mat, resy_design, h_opt):
    """
    Smoothing individual function without preselected bandwidth.

    Args:
        coord_mat (matrix): common coordinate matrix (l*d)
        resy_design (matrix): residual response matrix (n*l*m, m=d in MFSDA)
        h_opt (matrix): optimal bandwidth (m*d)
    """

    # Set up
    n, l, m = resy_design.shape
    d = coord_mat.shape[1]

    efit_eta = np.zeros((n, l, m))

    w = np.zeros((1, d + 1))
    w[0] = 1
    t_mat0 = np.zeros((l, l, d + 1))  # L x L x d + 1 matrix
    t_mat0[:, :, 0] = np.ones((l, l))

    for dii in range(d):
        t_mat0[:, :, dii + 1] = np.dot(np.atleast_2d(coord_mat[:, dii]).T, np.ones((1, l))) \
                                - np.dot(np.ones((l, 1)), np.atleast_2d(coord_mat[:, dii]))

    for mii in range(m):
        k_mat = np.ones((l, l))

        for dii in range(d):
            h = h_opt[mii, dii]
            k_mat = k_mat * ep_kernel(
                t_mat0[:, :, dii + 1] / h,
                h)  # Epanechnikov kernel smoothing function

        t_mat = np.transpose(t_mat0, [0, 2, 1])  # L x d+1 x L matrix

        for lii in range(l):
            kx = np.dot(np.atleast_2d(k_mat[:, lii]).T, np.ones(
                (1, d + 1))) * t_mat[:, :, lii]  # L0 x d+1 matrix
            sm_weight = np.dot(
                np.dot(
                    w,
                    inv(
                        np.dot(kx.T, t_mat[:, :, lii]) +
                        np.eye(d + 1) * 0.0001)), kx.T)
            efit_eta[:, lii, mii] = np.squeeze(
                np.dot(resy_design[:, :, mii], sm_weight.T))

    res_eta = resy_design - efit_eta  # n x L x m matrix of difference between resy_design and fitted eta

    esig_eta = np.zeros((m, m, l))
    for lii in range(l):
        esig_eta[:, :, lii] = np.dot(
            np.squeeze(efit_eta[:, lii, :]).T, np.squeeze(
                efit_eta[:, lii, :])) / n

    return efit_eta, res_eta, esig_eta
Example #2
0
def bw(resy_design, coord_mat, vh, h_ii):
    """
        optimal bandwidth selection in MVCM.

        Args:
            resy_design (matrix): residuals of imaging response data (n*l*m)
            coord_mat (matrix): common coordinate matrix (l*d)
            vh (matrix): candidate bandwidth matrix (nh*d)
            h_ii (scalar): candidate bandwidth index
        Outputs:
            gcv (vector): generalized cross validation index (m)
    """

    # Set up
    l, d = coord_mat.shape
    m = resy_design.shape[2]
    efit_resy = resy_design * 0
    gcv = np.zeros(m)

    w = np.zeros((1, d + 1))
    w[0] = 1

    t_mat0 = np.zeros((l, l, d + 1))  # L x L x d + 1 matrix
    t_mat0[:, :, 0] = np.ones((l, l))

    for dii in range(d):
        t_mat0[:, :, dii + 1] = np.dot(np.atleast_2d(coord_mat[:, dii]).T, np.ones((1, l))) \
                                - np.dot(np.ones((l, 1)), np.atleast_2d(coord_mat[:, dii]))

    t_mat = np.transpose(t_mat0, [0, 2, 1])  # L x d+1 x L matrix

    k_mat = np.ones((l, l))

    for dii in range(d):
        h = vh[h_ii, dii]
        k_mat = k_mat * ep_kernel(t_mat0[:, :, dii + 1] / h,
                                  h)  # Epanechnikov kernel smoothing function

        for mii in range(m):
            for lii in range(l):
                kx = np.dot(
                    np.atleast_2d(k_mat[:, lii]).T, np.ones(
                        (1, d + 1))) * t_mat[:, :, lii]  # L0 x d+1 matrix
                sm_weight = np.dot(
                    np.dot(
                        w,
                        inv(
                            np.dot(kx.T, t_mat[:, :, lii]) +
                            np.eye(d + 1) * 0.0001)), kx.T)
                efit_resy[:, lii, mii] = np.squeeze(
                    np.dot(resy_design[:, :, mii], sm_weight.T))

            gcv[mii] = np.sum(
                (efit_resy[:, :, mii] - resy_design[:, :, mii])**2)

    return gcv
Example #3
0
def lpks_wb1(coord_mat, x_design, y_design, flag):
    """
    Local linear kernel smoothing for optimal bandwidth selection.

    Args:
        coord_mat (matrix): common coordinate matrix (l*d)
        x_design (matrix): design matrix (n*p)
        y_design (matrix): shape data (response matrix, n*l*m, m=d in MFSDA)
        flag (vector): indices for optimal bandwidth (m*1)
    """

    # Set up
    n, p = x_design.shape
    l, d = coord_mat.shape
    m = y_design.shape[2]
    efit_beta = np.zeros((p, l, m))
    efity_design = y_design * 0

    nh = 50  # the number of candidate bandwidth
    w = np.zeros((1, d + 1))
    w[0] = 1
    t_mat0 = np.zeros((l, l, d + 1))  # L x L x d + 1 matrix
    t_mat0[:, :, 1] = np.ones((l, l))

    for dii in range(d):
        t_mat0[:, :, dii + 1] = np.dot(np.atleast_2d(coord_mat[:, dii]).T, np.ones((1, l))) \
                                - np.dot(np.ones((l, 1)), np.atleast_2d(coord_mat[:, dii]))

    hat_mat = np.dot(inv(np.dot(x_design.T, x_design) + np.eye(p) * 0.0001),
                     x_design.T)

    for mii in range(m):

        k_mat = np.ones((l, l))

        for dii in range(d):
            coord_range = np.ptp(coord_mat[:, dii])
            h_min = 0.01  # minimum bandwidth
            h_max = 0.5 * coord_range  # maximum bandwidth
            vh = np.logspace(np.log10(h_min), np.log10(h_max),
                             nh)  # candidate bandwidth
            h = vh[int(flag[mii])]
            k_mat = k_mat * ep_kernel(
                t_mat0[:, :, dii + 1] / h,
                h)  # Epanechnikov kernel smoothing function

        t_mat = np.transpose(t_mat0, [0, 2, 1])  # L x d+1 x L matrix

        for lii in range(l):
            kx = np.dot(np.atleast_2d(k_mat[:, lii]).T, np.ones(
                (1, d + 1))) * t_mat[:, :, lii]  # L0 x d+1 matrix
            hat_y_design = np.dot(hat_mat, y_design[:, :, mii])
            sm_weight = np.dot(
                np.dot(
                    w,
                    inv(
                        np.dot(kx.T, t_mat[:, :, lii]) +
                        np.eye(d + 1) * 0.0001)), kx.T)
            efit_beta[:, lii,
                      mii] = np.squeeze(np.dot(hat_y_design, sm_weight.T))

        efity_design[:, :, mii] = np.dot(x_design, efit_beta[:, :, mii])

    return efit_beta, efity_design
Example #4
0
def lpks(coord_mat, x_design, y_design):
    """
    Local linear kernel smoothing for optimal bandwidth selection.

    Args:
        coord_mat (matrix): common coordinate matrix (l*d)
        x_design (matrix): design matrix (n*p)
        y_design (matrix): shape data (response matrix, n*l*m, m=d in MFSDA)
    """

    # Set up
    n, p = x_design.shape
    l, d = coord_mat.shape
    m = y_design.shape[2]
    efit_beta = np.zeros((p, l, m))
    efity_design = np.zeros((n, l, m))

    nh = 50  # the number of candidate bandwidth
    gcv = np.zeros((nh, m))  # GCV performance function

    w = np.zeros((1, d + 1))
    w[0] = 1
    t_mat0 = np.zeros((l, l, d + 1))  # L x L x d + 1 matrix
    t_mat0[:, :, 0] = np.ones((l, l))
    vh = np.zeros((nh, d))
    h_opt = np.zeros((m, d))

    for dii in range(d):
        t_mat0[:, :, dii + 1] = np.dot(np.atleast_2d(coord_mat[:, dii]).T, np.ones((1, l))) \
                                - np.dot(np.ones((l, 1)), np.atleast_2d(coord_mat[:, dii]))
        coord_range = np.ptp(coord_mat[:, dii])
        h_min = 0.01  # minimum bandwidth
        h_max = 0.5 * coord_range  # maximum bandwidth
        vh[:, dii] = np.logspace(np.log10(h_min), np.log10(h_max), nh)  # candidate bandwidth

    t_mat = np.transpose(t_mat0, [0, 2, 1])  # L x d+1 x L matrix
    hat_mat = np.dot(inv(np.dot(x_design.T, x_design) + np.eye(p) * 0.00001), x_design.T)

    for nhii in range(nh):
        k_mat = np.ones((l, l))
        for dii in range(d):
            h = vh[nhii, dii]
            k_mat = k_mat * ep_kernel(t_mat0[:, :, dii + 1] / h, h)  # Epanechnikov kernel smoothing function
        for mii in range(m):
            hat_y_design = np.dot(hat_mat, y_design[:, :, mii])
            for lii in range(l):
                kx = np.dot(np.atleast_2d(k_mat[:, lii]).T, np.ones((1, d + 1)))*t_mat[:, :, lii]  # L0 x d+1 matrix
                sm_weight0 = np.dot(np.dot(w, inv(np.dot(kx.T, t_mat[:, :, lii]) + np.eye(d + 1) * 0.00001)), kx.T)
                efity_design[:, lii, mii] = np.squeeze(np.dot(x_design, np.dot(hat_y_design, sm_weight0.T)))
            gcv[nhii, mii] = np.mean((y_design[:, :, mii]-efity_design[:, :, mii])**2)

    flag = np.argmin(gcv, axis=0)  # optimal bandwidth

    for mii in range(m):

        k_mat = np.ones((l, l))
        hat_y_design = np.dot(hat_mat, y_design[:, :, mii])

        for dii in range(d):
            h = vh[int(flag[mii]), dii]
            k_mat = k_mat * ep_kernel(t_mat0[:, :, dii + 1] / h, h)  # Epanechnikov kernel smoothing function
            h_opt[dii, mii] = h

        for lii in range(l):
            kx = np.dot(np.atleast_2d(k_mat[:, lii]).T, np.ones((1, d + 1)))*t_mat[:, :, lii]  # L0 x d+1 matrix
            sm_weight = np.dot(np.dot(w, inv(np.dot(kx.T, t_mat[:, :, lii])+np.eye(d+1)*0.00001)), kx.T)
            efit_beta[:, lii, mii] = np.squeeze(np.dot(hat_y_design, sm_weight.T))

        efity_design[:, :, mii] = np.dot(x_design, efit_beta[:, :, mii])

    return efit_beta, efity_design, h_opt
Example #5
0
def lpks_pre_bw(coord_mat, x_design, y_design, h_opt):
    """
    Local linear kernel smoothing for optimal bandwidth selection.

    Args:
        coord_mat (matrix): common coordinate matrix (l*d)
        x_design (matrix): design matrix (n*p)
        y_design (matrix): shape data (response matrix, n*l*m, m=d in MFSDA)
        h_opt (matrix): prefixed optimal bandwidth (m*d)
    """

    # Set up
    n, p = x_design.shape
    l, d = coord_mat.shape
    m = y_design.shape[2]
    efit_beta = np.zeros((p, l, m))
    efity_design = np.zeros((n, l, m))

    nh = 50  # the number of candidate bandwidth
    w = np.zeros((1, d + 1))
    w[0] = 1
    t_mat0 = np.zeros((l, l, d + 1))  # L x L x d + 1 matrix
    t_mat0[:, :, 0] = np.ones((l, l))
    vh = np.zeros((nh, d))

    for dii in range(d):
        t_mat0[:, :, dii + 1] = np.dot(np.atleast_2d(coord_mat[:, dii]).T, np.ones((1, l))) \
                                - np.dot(np.ones((l, 1)), np.atleast_2d(coord_mat[:, dii]))
        coord_range = np.ptp(coord_mat[:, dii])
        h_min = 0.01  # minimum bandwidth
        h_max = 0.5 * coord_range  # maximum bandwidth
        vh[:, dii] = np.logspace(np.log10(h_min), np.log10(h_max),
                                 nh)  # candidate bandwidth
        # h_opt[dii] = (4 / (n*(d + 2))) ** (1 / (d + 4)) * np.std(coord_mat[:, dii])  # Silverman's rule of thumb

    t_mat = np.transpose(t_mat0, [0, 2, 1])  # L x d+1 x L matrix
    hat_mat = np.dot(inv(np.dot(x_design.T, x_design) + np.eye(p) * 0.00001),
                     x_design.T)

    for mii in range(m):

        k_mat = np.ones((l, l))
        hat_y_design = np.dot(hat_mat, y_design[:, :, mii])

        for dii in range(d):
            h = h_opt[mii, dii]
            k_mat = k_mat * ep_kernel(
                t_mat0[:, :, dii + 1] / h,
                h)  # Epanechnikov kernel smoothing function
            h_opt[dii, mii] = h

        for lii in range(l):
            kx = np.dot(np.atleast_2d(k_mat[:, lii]).T, np.ones(
                (1, d + 1))) * t_mat[:, :, lii]  # L0 x d+1 matrix
            sm_weight = np.dot(
                np.dot(
                    w,
                    inv(
                        np.dot(kx.T, t_mat[:, :, lii]) +
                        np.eye(d + 1) * 0.00001)), kx.T)
            efit_beta[:, lii,
                      mii] = np.squeeze(np.dot(hat_y_design, sm_weight.T))

        efity_design[:, :, mii] = np.dot(x_design, efit_beta[:, :, mii])

    return efit_beta, efity_design
def lpks_wob(coord_mat, x_design, y_design):
    """
    Local linear kernel smoothing for optimal bandwidth selection.

    Args:
        coord_mat (matrix): common coordinate matrix (l*d)
        x_design (matrix): design matrix (n*p)
        y_design (matrix): shape data (response matrix, n*l*m, m=d in MFSDA)
    """

    # Set up
    n, p = x_design.shape
    l, d = coord_mat.shape
    m = y_design.shape[2]
    efity_design = y_design * 0

    nh = 50  # the number of candidate bandwidth
    k = 5  # number of folders
    k_ind = np.floor(np.linspace(1, n, k + 1))
    gcv = np.zeros((nh, m))  # GCV performance function

    w = np.zeros((1, d + 1))
    w[0] = 1
    t_mat0 = np.zeros((l, l, d + 1))  # L x L x d + 1 matrix
    t_mat0[:, :, 1] = np.ones((l, l))

    for dii in range(d):
        t_mat0[:, :, dii + 1] = np.dot(np.atleast_2d(coord_mat[:, dii]).T, np.ones((1, l))) \
                                - np.dot(np.ones((l, 1)), np.atleast_2d(coord_mat[:, dii]))

    for nhii in range(nh):
        k_mat = np.ones((l, l))

        for dii in range(d):
            coord_range = np.ptp(coord_mat[:, dii])
            h_min = 0.01  # minimum bandwidth
            h_max = 0.5 * coord_range  # maximum bandwidth
            vh = np.logspace(np.log10(h_min), np.log10(h_max),
                             nh)  # candidate bandwidth
            h = vh[nhii]
            k_mat = k_mat * ep_kernel(
                t_mat0[:, :, dii + 1] / h,
                h)  # Epanechnikov kernel smoothing function

        t_mat = np.transpose(t_mat0, [0, 2, 1])  # L x d+1 x L matrix

        for mii in range(m):
            for lii in range(l):
                kx = np.dot(
                    np.atleast_2d(k_mat[:, lii]).T, np.ones(
                        (1, d + 1))) * t_mat[:, :, lii]  # L0 x d+1 matrix
                indx = np.ones((1, n))
                for kii in range(k):
                    ind_beg = int(k_ind[kii] - 1)
                    ind_end = int(k_ind[kii + 1])
                    indx[0, ind_beg:ind_end] = 0
                    x_design0 = x_design[np.nonzero(indx == 1)[0], :]
                    hat_mat = np.dot(
                        inv(
                            np.dot(x_design0.T, x_design0) +
                            np.eye(p) * 0.0001), x_design0.T)
                    hat_y_design0 = np.dot(
                        hat_mat, y_design[np.nonzero(indx == 1)[0], :, mii])
                    sm_weight = np.dot(
                        np.dot(
                            w,
                            inv(
                                np.dot(kx.T, t_mat[:, :, lii]) +
                                np.eye(d + 1) * 0.0001)), kx.T)
                    efit_beta = np.dot(hat_y_design0, sm_weight.T)
                    efity_design[ind_beg:ind_end, lii, mii] = np.squeeze(
                        np.dot(x_design[ind_beg:ind_end, :], efit_beta))

            gcv[nhii, mii] = np.mean(
                (y_design[:, :, mii] - efity_design[:, :, mii])**2)

    flag = np.argmin(gcv, axis=0)  # optimal bandwidth

    return flag