Example #1
0
class TestUnit(TestCase):
    @given(sfst.get_array_1d2d())  # type: ignore
    def test_shape_filter(self, shape: np.ndarray) -> None:
        self.assertTrue(len(TypeBlocks.shape_filter(shape)), 2)

    @given(sfst.get_type_blocks())  # type: ignore
    def test_basic_attributes(self, tb: TypeBlocks) -> None:
        self.assertTrue(len(tb.dtypes), len(tb))
        self.assertTrue(len(tb.shapes), len(tb.mloc))

    @given(sfst.get_type_blocks())  # type: ignore
    def test_values(self, tb: TypeBlocks) -> None:
        values = tb.values
        self.assertEqual(values.shape, tb.shape)
        self.assertEqual(values.dtype, tb._row_dtype)

    @given(sfst.get_type_blocks())  # type: ignore
    def test_element_items(self, tb: TypeBlocks) -> None:

        # NOTE: this found a flaw in _extract_iloc where we tried to optimize selection with a unified array

        count = 0
        for k, v in tb.element_items():
            count += 1
            v_extract = tb.iloc[k]

            self.assertEqualWithNaN(v, v_extract)

        self.assertEqual(count, tb.size)

    @given(sfst.get_type_blocks_aligned_array())  # type: ignore
    def test_append(
            self, tb_aligned_array: tp.Tuple[TypeBlocks, np.ndarray]) -> None:
        tb, aa = tb_aligned_array
        shape_original = tb.shape
        tb.append(aa)
        if aa.ndim == 1:
            self.assertEqual(tb.shape[1], shape_original[1] + 1)
        else:
            self.assertEqual(tb.shape[1], shape_original[1] + aa.shape[1])

    @given(sfst.get_type_blocks_aligned_type_blocks(min_size=2, max_size=2)
           )  # type: ignore
    def test_extend(self, tbs: tp.Sequence[TypeBlocks]) -> None:
        front = tbs[0]
        back = tbs[1]
        shape_original = front.shape
        # extend with type blocks
        front.extend(back)
        self.assertEqual(
            front.shape,
            (shape_original[0], shape_original[1] + back.shape[1]))

        # extend with iterable of arrays
        front.extend(back._blocks)
        self.assertEqual(
            front.shape,
            (shape_original[0], shape_original[1] + back.shape[1] * 2))
Example #2
0
class TestUnit(TestCase):


    @given(get_array_1d2d())
    def test_mloc(self, array):

        x = util.mloc(array)
        self.assertTrue(isinstance(x, int))


    @given(get_dtype_pairs())
    def test_resolve_dtype(self, dtype_pair):

        x = util.resolve_dtype(*dtype_pair)
        self.assertTrue(isinstance(x, np.dtype))

    @given(get_dtypes(min_size=1))
    def test_resolve_dtype_iter(self, dtypes):

        x = util.resolve_dtype_iter(dtypes)
        self.assertTrue(isinstance(x, np.dtype))

    @given(get_labels(min_size=1))
    def test_resolve_type_object_iter(self, objects):

        x = util.resolve_type_object_iter(objects)
        self.assertTrue(x in (None, str, object))

    @given(get_arrays_2d_aligned_columns())
    def test_concat_resolved_axis_0(self, arrays):
        array = util.concat_resolved(arrays, axis=0)
        self.assertEqual(array.ndim, 2)
        self.assertEqual(array.dtype, util.resolve_dtype_iter((x.dtype for x in arrays)))

    @given(get_arrays_2d_aligned_rows())
    def test_concat_resolved_axis_1(self, arrays):
        array = util.concat_resolved(arrays, axis=1)
        self.assertEqual(array.ndim, 2)
        self.assertEqual(array.dtype, util.resolve_dtype_iter((x.dtype for x in arrays)))

    @given(get_dtype(), get_shape_1d2d(), get_value())
    def test_full_or_fill(self, dtype, shape, value):
        array = util.full_for_fill(dtype, shape, fill_value=value)
        self.assertTrue(array.shape == shape)
        if isinstance(value, (float, complex)) and np.isnan(value):
            pass
        else:
            self.assertTrue(value in array)
class TestUnit(TestCase):


    @given(sfst.get_labels())  # type: ignore
    def test_get_labels(self, values: tp.Iterable[tp.Hashable]) -> None:
        for value in values:
            self.assertTrue(isinstance(hash(value), int))

    @given(sfst.get_dtypes())  # type: ignore
    def test_get_dtypes(self, dtypes: tp.Iterable[np.dtype]) -> None:
        for dt in dtypes:
            self.assertTrue(isinstance(dt, np.dtype))

    @given(sfst.get_spacing(10))  # type: ignore
    def test_get_spacing_10(self, spacing: tp.Iterable[int]) -> None:
        self.assertEqual(sum(spacing), 10)

    @hypo_settings(max_examples=10)  # type: ignore
    @given(sfst.get_shape_1d2d())  # type: ignore
    def test_get_shape_1d2d(self, shape: tp.Tuple[int, ...]) -> None:
        self.assertTrue(isinstance(shape, tuple))
        self.assertTrue(len(shape) in (1, 2))

    @hypo_settings(max_examples=10)  # type: ignore
    @given(sfst.get_array_1d2d())  # type: ignore
    def test_get_array_1d2d(self, array: np.ndarray) -> None:
        self.assertTrue(isinstance(array, np.ndarray))
        self.assertTrue(array.ndim in (1, 2))

    @hypo_settings(max_examples=10)  # type: ignore
    @given(sfst.get_arrays_2d_aligned_columns(min_size=2))  # type: ignore
    def test_get_arrays_2s_aligned_columns(self, arrays: tp.Iterable[np.ndarray]) -> None:
        array_iter = iter(arrays)
        a1 = next(array_iter)
        match = a1.shape[1]
        for array in array_iter:
            self.assertEqual(array.shape[1], match)

    @given(sfst.get_arrays_2d_aligned_rows(min_size=2))  # type: ignore
    def test_get_arrays_2s_aligned_rows(self, arrays: tp.Iterable[np.ndarray]) -> None:
        array_iter = iter(arrays)
        a1 = next(array_iter)
        match = a1.shape[0]
        for array in array_iter:
            self.assertEqual(array.shape[0], match)

    @hypo_settings(max_examples=10)  # type: ignore
    @given(sfst.get_blocks())  # type: ignore
    def test_get_blocks(self, blocks: tp.Tuple[np.ndarray]) -> None:
        self.assertTrue(isinstance(blocks, tuple))
        for b in blocks:
            self.assertTrue(isinstance(b, np.ndarray))
            self.assertTrue(b.ndim in (1, 2))

    @hypo_settings(max_examples=10)  # type: ignore
    @given(sfst.get_type_blocks())  # type: ignore
    def test_get_type_blocks(self, tb: TypeBlocks) -> None:
        self.assertTrue(isinstance(tb, TypeBlocks))
        rows, cols = tb.shape
        col_count = 0
        for b in tb._blocks:
            if b.ndim == 1:
                self.assertEqual(len(b), rows)
                col_count += 1
            else:
                self.assertEqual(b.ndim, 2)
                self.assertEqual(b.shape[0], rows)
                col_count += b.shape[1]

        self.assertEqual(col_count, cols)

    @hypo_settings(max_examples=10) # type: ignore
    @given(sfst.get_index()) # type: ignore
    def test_get_index(self, idx: Index) -> None:
        self.assertTrue(isinstance(idx, Index))
        self.assertEqual(len(idx), len(idx.values))

    @hypo_settings(max_examples=10)  # type: ignore
    @given(sfst.get_index_hierarchy()) # type: ignore
    def test_get_index_hierarchy(self, idx: IndexHierarchy) -> None:
        self.assertTrue(isinstance(idx, IndexHierarchy))
        self.assertTrue(idx.depth > 1)
        self.assertEqual(len(idx), len(idx.values))

    @hypo_settings(max_examples=10)  # type: ignore
    @given(sfst.get_series())  # type: ignore
    def test_get_series(self, series: Series) -> None:
        self.assertTrue(isinstance(series, Series))
        self.assertEqual(len(series), len(series.values))

    @hypo_settings(max_examples=10)  # type: ignore
    @given(sfst.get_frame())  # type: ignore
    def test_get_frame(self, frame: Frame) -> None:
        self.assertTrue(isinstance(frame, Frame))
        self.assertEqual(frame.shape, frame.values.shape)

    @hypo_settings(max_examples=10)  # type: ignore
    @given(sfst.get_frame(index_cls=IndexHierarchy, columns_cls=IndexHierarchy))  # type: ignore
    def test_get_frame_hierarchy(self, frame: Frame) -> None:
        self.assertTrue(isinstance(frame, Frame))
        self.assertTrue(frame.index.depth > 1)
        self.assertTrue(frame.columns.depth > 1)
        self.assertEqual(frame.shape, frame.values.shape)
Example #4
0
class TestUnit(TestCase):
    @given(get_array_1d2d())  # type: ignore
    def test_mloc(self, array: np.ndarray) -> None:

        x = util.mloc(array)
        self.assertTrue(isinstance(x, int))

    @given(get_array_1d2d())  # type: ignore
    def test_shape_filter(self, shape: np.ndarray) -> None:
        self.assertTrue(len(util.shape_filter(shape)), 2)

    @given(get_dtype_pairs())  # type: ignore
    def test_resolve_dtype(self, dtype_pair: tp.Tuple[np.dtype,
                                                      np.dtype]) -> None:

        x = util.resolve_dtype(*dtype_pair)
        self.assertTrue(isinstance(x, np.dtype))

    @given(get_dtypes(min_size=1))  # type: ignore
    def test_resolve_dtype_iter(self, dtypes: tp.Iterable[np.dtype]) -> None:

        x = util.resolve_dtype_iter(dtypes)
        self.assertTrue(isinstance(x, np.dtype))

    @given(get_labels(min_size=1))  # type: ignore
    def test_resolve_type_iter(self, objects: tp.Iterable[object]) -> None:

        known_types = set(
            (None, type(None), bool, str, object, int, float, complex,
             datetime.date, datetime.datetime, fractions.Fraction))
        resolved, has_tuple, values_post = util.resolve_type_iter(objects)
        self.assertTrue(resolved in known_types)

    @given(get_arrays_2d_aligned_columns())  # type: ignore
    def test_concat_resolved_axis_0(self, arrays: tp.List[np.ndarray]) -> None:
        array = util.concat_resolved(arrays, axis=0)
        self.assertEqual(array.ndim, 2)
        self.assertEqual(array.dtype,
                         util.resolve_dtype_iter((x.dtype for x in arrays)))

    @given(get_arrays_2d_aligned_rows())  # type: ignore
    def test_concat_resolved_axis_1(self, arrays: tp.List[np.ndarray]) -> None:
        array = util.concat_resolved(arrays, axis=1)
        self.assertEqual(array.ndim, 2)
        self.assertEqual(array.dtype,
                         util.resolve_dtype_iter((x.dtype for x in arrays)))

    @given(get_dtype(), get_shape_1d2d(), get_value())  # type: ignore
    def test_full_or_fill(self, dtype: np.dtype,
                          shape: tp.Union[tp.Tuple[int], tp.Tuple[int, int]],
                          value: object) -> None:
        array = util.full_for_fill(dtype, shape, fill_value=value)
        self.assertTrue(array.shape == shape)
        if isinstance(value, (float, complex)) and np.isnan(value):
            pass
        else:
            self.assertTrue(value in array)

    @given(get_dtype())  # type: ignore
    def test_dtype_to_na(self, dtype: util.DtypeSpecifier) -> None:
        post = util.dtype_to_na(dtype)
        self.assertTrue(post in {0, False, None, '', np.nan, util.NAT})

    @given(get_array_1d2d(dtype_group=DTGroup.NUMERIC))  # type: ignore
    def test_ufunc_axis_skipna(self, array: np.ndarray) -> None:

        has_na = util.isna_array(array).any()

        for nt in UFUNC_AXIS_SKIPNA.values():
            ufunc = nt.ufunc
            ufunc_skipna = nt.ufunc_skipna
            # dtypes = nt.dtypes
            # composable = nt.composable
            # doc = nt.doc_header
            # size_one_unity = nt.size_one_unity

            with np.errstate(over='ignore', under='ignore', divide='ignore'):

                post = util.ufunc_axis_skipna(array=array,
                                              skipna=True,
                                              axis=0,
                                              ufunc=ufunc,
                                              ufunc_skipna=ufunc_skipna)
                if array.ndim == 2:
                    self.assertTrue(post.ndim == 1)

    @given(get_array_1d2d())  # type: ignore
    def test_ufunc_unique(self, array: np.ndarray) -> None:
        post = util.ufunc_unique(array, axis=0)
        self.assertTrue(len(post) <= array.shape[0])

    @given(get_array_1d(min_size=1), st.integers())  # type: ignore
    def test_roll_1d(self, array: np.ndarray, shift: int) -> None:
        post = util.roll_1d(array, shift)
        self.assertEqual(len(post), len(array))
        self.assertEqualWithNaN(array[-(shift % len(array))], post[0])

    @given(get_array_2d(min_rows=1, min_columns=1),
           st.integers())  # type: ignore
    def test_roll_2d(self, array: np.ndarray, shift: int) -> None:
        for axis in (0, 1):
            post = util.roll_2d(array, shift=shift, axis=axis)
            self.assertEqual(post.shape, array.shape)

            start = -(shift % array.shape[axis])

            if axis == 0:
                a = array[start]
                b = post[0]
            else:
                a = array[:, start]
                b = post[:, 0]

            self.assertAlmostEqualValues(a, b)

    @given(get_array_1d(dtype_group=DTGroup.OBJECT))  # type: ignore
    def test_iterable_to_array_a(self, array: np.ndarray) -> None:
        values = array.tolist()
        post, _ = util.iterable_to_array(values)
        self.assertAlmostEqualValues(post, values)

        # explicitly giving object dtype
        post, _ = util.iterable_to_array(values, dtype=util.DTYPE_OBJECT)
        self.assertAlmostEqualValues(post, values)

    @given(get_labels())  # type: ignore
    def test_iterable_to_array_b(self, labels: tp.Iterable[tp.Any]) -> None:
        post, _ = util.iterable_to_array(labels)
        self.assertAlmostEqualValues(post, labels)
        self.assertTrue(isinstance(post, np.ndarray))

    @given(st.slices(10))  # type: ignore #pylint: disable=E1120
    def test_slice_to_ascending_slice(self, key: slice) -> None:

        post_key = util.slice_to_ascending_slice(key, size=10)
        self.assertEqual(set(range(*key.indices(10))),
                         set(range(*post_key.indices(10))))

# to_datetime64
# to_timedelta64
# key_to_datetime_key

    @given(get_array_1d2d())  # type: ignore
    def test_array_to_groups_and_locations(self, array: np.ndarray) -> None:

        groups, locations = util.array_to_groups_and_locations(array, 0)

        if len(array) > 0:
            self.assertTrue(len(groups) >= 1)

        # always 1dm locations
        self.assertTrue(locations.ndim == 1)
        self.assertTrue(len(np.unique(locations)) == len(groups))

    @given(get_array_1d2d())  # type: ignore
    def test_isna_array(self, array: np.ndarray) -> None:

        post = util.isna_array(array)
        self.assertTrue(post.dtype == bool)

        values = np.ravel(array)
        count_na = sum(util.isna_element(x) for x in values)

        self.assertTrue(np.ravel(post).sum() == count_na)

    @given(get_array_1d(dtype_group=DTGroup.BOOL))  # type: ignore
    def test_binary_transition(self, array: np.ndarray) -> None:
        post = util.binary_transition(array)

        # could be 32 via result of np.nonzero
        self.assertTrue(post.dtype in (np.int32, np.int64))

        # if no True in original array, result will be empty
        if array.sum() == 0:
            self.assertTrue(len(post) == 0)
        # if all True, result is empty
        elif array.sum() == len(array):
            self.assertTrue(len(post) == 0)
        else:
            # the post selection shold always be indices that are false
            self.assertTrue(array[post].sum() == 0)

    @given(get_array_1d2d())  # type: ignore
    def test_array_to_duplicated(self, array: np.ndarray) -> None:
        if array.ndim == 2:
            for axis in (0, 1):
                post = util.array_to_duplicated(array, axis=axis)
                if axis == 0:
                    unique_count = len(set(tuple(x) for x in array))
                else:
                    unique_count = len(
                        set(tuple(array[:, i]) for i in range(array.shape[1])))
                if unique_count < array.shape[axis]:
                    self.assertTrue(post.sum() > 0)
        else:
            post = util.array_to_duplicated(array)
            # if not all value are unique, we must have some duplicated
            if len(set(array)) < len(array):
                self.assertTrue(post.sum() > 0)

        self.assertTrue(post.dtype == bool)

    @given(get_array_1d2d())  # type: ignore
    def test_array_shift(self, array: np.ndarray) -> None:

        for shift in (-1, 1):
            for wrap in (True, False):

                tests = []
                post1 = util.array_shift(array=array,
                                         shift=shift,
                                         axis=0,
                                         wrap=wrap)
                tests.append(post1)

                if array.ndim == 2:
                    post2 = util.array_shift(array=array,
                                             shift=shift,
                                             axis=1,
                                             wrap=wrap)
                    tests.append(post2)

                for post in tests:
                    self.assertTrue(array.shape == post.shape)

                    # type is only always maintained if we are wrapping
                    if wrap:
                        self.assertTrue(array.dtype == post.dtype)

    @given(st.lists(get_array_1d(), min_size=2, max_size=2))  # type: ignore
    def test_union1d(self, arrays: tp.Sequence[np.ndarray]) -> None:
        post = util.union1d(arrays[0], arrays[1], assume_unique=False)
        self.assertTrue(post.ndim == 1)
        # nan values in complex numbers make direct comparison tricky
        self.assertTrue(len(post) == len(set(arrays[0]) | set(arrays[1])))

        # complex results are tricky to compare after forming sets
        if (post.dtype.kind not in ('O', 'M', 'm', 'c', 'f')
                and not np.isnan(post).any()):
            self.assertTrue(set(post) == (set(arrays[0]) | set(arrays[1])))

    @given(st.lists(get_array_1d(), min_size=2, max_size=2))  # type: ignore
    def test_intersect1d(self, arrays: tp.Sequence[np.ndarray]) -> None:
        post = util.intersect1d(arrays[0], arrays[1], assume_unique=False)
        self.assertTrue(post.ndim == 1)
        # nan values in complex numbers make direct comparison tricky
        self.assertTrue(len(post) == len(set(arrays[0]) & set(arrays[1])))

        if (post.dtype.kind not in ('O', 'M', 'm', 'c', 'f')
                and not np.isnan(post).any()):
            self.assertTrue(set(post) == (set(arrays[0]) & set(arrays[1])))

    @given(get_arrays_2d_aligned_columns(min_size=2,
                                         max_size=2))  # type: ignore
    def test_union2d(self, arrays: tp.Sequence[np.ndarray]) -> None:
        post = util.union2d(arrays[0], arrays[1], assume_unique=False)
        if post.dtype == object:
            self.assertTrue(post.ndim == 1)
        else:
            self.assertTrue(post.ndim == 2)

        self.assertTrue(
            len(post) == len(
                set(util.array2d_to_tuples(arrays[0]))
                | set(util.array2d_to_tuples(arrays[1]))))

    @given(get_arrays_2d_aligned_columns(min_size=2,
                                         max_size=2))  # type: ignore
    def test_intersect2d(self, arrays: tp.Sequence[np.ndarray]) -> None:
        post = util.intersect2d(arrays[0], arrays[1], assume_unique=False)
        if post.dtype == object:
            self.assertTrue(post.ndim == 1)
        else:
            self.assertTrue(post.ndim == 2)

        self.assertTrue(
            len(post) == len(
                set(util.array2d_to_tuples(arrays[0]))
                & set(util.array2d_to_tuples(arrays[1]))))

    @given(get_arrays_2d_aligned_columns())  # type: ignore
    def test_array_set_ufunc_many(self,
                                  arrays: tp.Sequence[np.ndarray]) -> None:

        for union in (True, False):
            post = util.ufunc_set_iter(arrays, union=union)
            if post.dtype == object:
                # returned object arrays might be 2D or 1D of tuples
                self.assertTrue(post.ndim in (1, 2))
            else:
                self.assertTrue(post.ndim == 2)
Example #5
0
class TestUnit(TestCase):


    @given(get_array_1d2d())  # type: ignore
    def test_mloc(self, array: np.ndarray) -> None:

        x = util.mloc(array)
        self.assertTrue(isinstance(x, int))


    @given(get_dtype_pairs())  # type: ignore
    def test_resolve_dtype(self, dtype_pair: tp.Tuple[np.dtype, np.dtype]) -> None:

        x = util.resolve_dtype(*dtype_pair)
        self.assertTrue(isinstance(x, np.dtype))

    @given(get_dtypes(min_size=1))  # type: ignore
    def test_resolve_dtype_iter(self, dtypes: tp.Iterable[np.dtype]) -> None:

        x = util.resolve_dtype_iter(dtypes)
        self.assertTrue(isinstance(x, np.dtype))

    @given(get_labels(min_size=1))  # type: ignore
    def test_resolve_type_iter(self, objects: tp.Iterable[object]) -> None:

        known_types = set((
                None,
                type(None),
                bool,
                str,
                object,
                int,
                float,
                complex,
                datetime.date,
                datetime.datetime,
                fractions.Fraction
                ))
        resolved, has_tuple, values_post = util.resolve_type_iter(objects)
        self.assertTrue(resolved in known_types)



    @given(get_arrays_2d_aligned_columns())  # type: ignore
    def test_concat_resolved_axis_0(self, arrays: tp.List[np.ndarray]) -> None:
        array = util.concat_resolved(arrays, axis=0)
        self.assertEqual(array.ndim, 2)
        self.assertEqual(array.dtype, util.resolve_dtype_iter((x.dtype for x in arrays)))

    @given(get_arrays_2d_aligned_rows())  # type: ignore
    def test_concat_resolved_axis_1(self, arrays: tp.List[np.ndarray]) -> None:
        array = util.concat_resolved(arrays, axis=1)
        self.assertEqual(array.ndim, 2)
        self.assertEqual(array.dtype, util.resolve_dtype_iter((x.dtype for x in arrays)))

    @given(get_dtype(), get_shape_1d2d(), get_value())  # type: ignore
    def test_full_or_fill(self,
            dtype: np.dtype,
            shape: tp.Union[tp.Tuple[int], tp.Tuple[int, int]],
            value: object) -> None:
        array = util.full_for_fill(dtype, shape, fill_value=value)
        self.assertTrue(array.shape == shape)
        if isinstance(value, (float, complex)) and np.isnan(value):
            pass
        else:
            self.assertTrue(value in array)

    @given(get_dtype())  # type: ignore
    def test_dtype_to_na(self, dtype: util.DtypeSpecifier) -> None:
        post = util.dtype_to_na(dtype)
        self.assertTrue(post in {0, False, None, '', np.nan, util.NAT})


    @given(get_array_1d(min_size=1, dtype_group=DTGroup.NUMERIC)) # type: ignore
    def test_ufunc_skipna_1d(self, array: np.ndarray) -> None:

        has_na = util.isna_array(array).any()
        for ufunc, ufunc_skipna, dtype in UFUNC_AXIS_SKIPNA.values():

            with np.errstate(over='ignore', under='ignore'):
                v1 = ufunc_skipna(array)
                # this should return a single value
                self.assertFalse(isinstance(v1, np.ndarray))

                if has_na:
                    v2 = ufunc(array)
                    self.assertFalse(isinstance(v2, np.ndarray))

    @given(get_array_1d2d()) # type: ignore
    def test_ufunc_unique(self, array: np.ndarray) -> None:
        post = util.ufunc_unique(array, axis=0)
        self.assertTrue(len(post) <= array.shape[0])

    @given(get_array_1d(min_size=1), st.integers()) # type: ignore
    def test_roll_1d(self, array: np.ndarray, shift: int) -> None:
        post = util.roll_1d(array, shift)
        self.assertEqual(len(post), len(array))
        self.assertEqualWithNaN(array[-(shift % len(array))], post[0])

    @given(get_array_2d(min_rows=1, min_columns=1), st.integers()) # type: ignore
    def test_roll_2d(self, array: np.ndarray, shift: int) -> None:
        for axis in (0, 1):
            post = util.roll_2d(array, shift=shift, axis=axis)
            self.assertEqual(post.shape, array.shape)

            start = -(shift % array.shape[axis])

            if axis == 0:
                a = array[start]
                b = post[0]
            else:
                a = array[:, start]
                b = post[:, 0]

            self.assertAlmostEqualValues(a, b)



    @given(get_array_1d(dtype_group=DTGroup.OBJECT)) # type: ignore
    def test_iterable_to_array_a(self, array: np.ndarray) -> None:
        values = array.tolist()
        post, _ = util.iterable_to_array(values)
        self.assertAlmostEqualValues(post, values)

        # explicitly giving object dtype
        post, _ = util.iterable_to_array(values, dtype=util.DTYPE_OBJECT)
        self.assertAlmostEqualValues(post, values)


    @given(get_labels()) # type: ignore
    def test_iterable_to_array_b(self, labels: tp.Iterable[tp.Any]) -> None:
        post, _ = util.iterable_to_array(labels)
        self.assertAlmostEqualValues(post, labels)
        self.assertTrue(isinstance(post, np.ndarray))


    @given(st.slices(10)) # type: ignore
    def test_slice_to_ascending_slice(self, key: slice) -> None:

        post_key = util.slice_to_ascending_slice(key, size=10)
        self.assertEqual(
            set(range(*key.indices(10))),
            set(range(*post_key.indices(10)))
            )

# to_datetime64
# to_timedelta64
# key_to_datetime_key

    @given(get_array_1d2d()) # type: ignore
    def test_array_to_groups_and_locations(self, array: np.ndarray) -> None:

        groups, locations = util.array_to_groups_and_locations(array, 0)

        if len(array) > 0:
            self.assertTrue(len(groups) >= 1)

        # always 1dm locations
        self.assertTrue(locations.ndim == 1)
        self.assertTrue(len(np.unique(locations)) == len(groups))


    @given(get_array_1d2d()) # type: ignore
    def test_isna_array(self, array: np.ndarray) -> None:

        post = util.isna_array(array)
        self.assertTrue(post.dtype == bool)

        values = np.ravel(array)
        count_na = sum(util.isna_element(x) for x in values)

        self.assertTrue(np.ravel(post).sum() == count_na)


    @given(get_array_1d(dtype_group=DTGroup.BOOL)) # type: ignore
    def test_binary_transition(self, array: np.ndarray) -> None:
        post = util.binary_transition(array)

        # could be 32 via result of np.nonzero
        self.assertTrue(post.dtype in (np.int32, np.int64))

        # if no True in original array, result will be empty
        if array.sum() == 0:
            self.assertTrue(len(post) == 0)
        # if all True, result is empty
        elif array.sum() == len(array):
            self.assertTrue(len(post) == 0)
        else:
            # the post selection shold always be indices that are false
            self.assertTrue(array[post].sum() == 0)
Example #6
0
class TestUnit(TestCase):
    @given(
        sfst.get_frame(
            dtype_group=sfst.DTGroup.ALL_NO_OBJECT,
            index_dtype_group=sfst.DTGroup.BASIC,
            columns_dtype_group=sfst.DTGroup.BASIC,
        ))
    def test_frame_to_npz_a(self, f1: Frame) -> None:
        # if f1.columns.dtype.kind != 'O' and f1.index.dtype.kind != 'O':
        with temp_file('.npz') as fp:
            f1.to_npz(fp)
            f2 = Frame.from_npz(fp)
            self.assertTrue(
                f1.equals(f2,
                          compare_name=True,
                          compare_dtype=True,
                          compare_class=True))

    @given(
        sfst.get_frame(
            dtype_group=sfst.DTGroup.ALL_NO_OBJECT,
            index_cls=IndexDate,
            index_dtype_group=sfst.DTGroup.DATE,
            columns_cls=IndexDate,
            columns_dtype_group=sfst.DTGroup.DATE,
        ))
    def test_frame_to_npz_b(self, f1: Frame) -> None:
        # if f1.columns.dtype.kind != 'O' and f1.index.dtype.kind != 'O':
        with temp_file('.npz') as fp:
            f1.to_npz(fp)
            f2 = Frame.from_npz(fp)
            self.assertTrue(
                f1.equals(f2,
                          compare_name=True,
                          compare_dtype=True,
                          compare_class=True))

    @given(sfst.get_array_1d2d(dtype_group=sfst.DTGroup.ALL_NO_OBJECT))
    def test_frame_to_npy_a(self, a1: Frame) -> None:

        header_decode_cache: HeaderDecodeCacheType = {}

        with temp_file('.npy') as fp:
            with open(fp, 'wb') as f:
                NPYConverter.to_npy(f, a1)

            # check compatibility with built-in NPY reading
            a2 = np.load(fp)
            if a2.dtype.kind in DTYPE_INEXACT_KINDS:
                self.assertAlmostEqualArray(a1, a2)
            else:
                self.assertTrue((a1 == a2).all())
            self.assertTrue(a1.shape == a2.shape)

            with open(fp, 'rb') as f:
                a3, _ = NPYConverter.from_npy(f, header_decode_cache)
                if a3.dtype.kind in DTYPE_INEXACT_KINDS:
                    self.assertAlmostEqualArray(a1, a3)
                else:
                    self.assertTrue((a1 == a3).all())
                self.assertTrue(a1.shape == a3.shape)

    @given(sfst.get_array_1d2d(dtype_group=sfst.DTGroup.ALL_NO_OBJECT))
    def test_frame_to_npy_b(self, a1: Frame) -> None:

        header_decode_cache: HeaderDecodeCacheType = {}

        with temp_file('.npy') as fp:
            with open(fp, 'wb') as f:
                NPYConverter.to_npy(f, a1)

            with open(fp, 'rb') as f:
                a2, mm = NPYConverter.from_npy(
                    f,
                    header_decode_cache,
                    memory_map=True,
                )
                if a2.dtype.kind in DTYPE_INEXACT_KINDS:
                    self.assertAlmostEqualArray(a1, a2)
                else:
                    self.assertTrue((a1 == a2).all())
                self.assertTrue(a1.shape == a2.shape)