def plot():

    fd = open('Biso_v_resolution.gnuplotdata', 'r')
    lines = fd.readlines()
    fd.close()
    d_splot = {}
    l_resolution = []
    l_Biso = []
    for line in lines:
        l = line.split()
        resolution = float(l[1])
        Biso = float(l[0])
        resolution_rounded = round(resolution, 1)
        ##        resolution_rounded = 0.1*round(resolution/0.1,0)
        Biso_rounded = round(Biso, 0)
        if not resolution_rounded in d_splot.keys():
            d_splot[resolution_rounded] = {}
        if not Biso_rounded in d_splot[resolution_rounded].keys():
            d_splot[resolution_rounded][Biso_rounded] = 0
        d_splot[resolution_rounded][Biso_rounded] += 1
        l_resolution += [resolution]
        l_Biso += [Biso]
    a, b, r, p = statistics.do_regression(
        l_resolution,
        l_Biso,
        verbose=False,
    )
    print 'correlation = r =', r
    tcrit = 1.960  ## 95% confidence 2 tail (student table...)
    ##    tcrit = 76.
    ##    f,g,h = statistics.do_confidence_bands(l_resolution,l_Biso,tcrit,)

    lines = []
    ##    for resolution in range(5,35+1):
    for resolution in range(5, 35 + 1):
        resolution /= 10.
        for Biso in range(0, 100 + 1):
            Biso /= 1.
            if not resolution in d_splot.keys():
                count = 0
            elif not Biso in d_splot[resolution].keys():
                count = 0
            else:
                count = d_splot[resolution][Biso]
            lines += ['%s %s %s\n' % (
                resolution,
                Biso,
                count,
            )]
        lines += ['\n']

    gnuplot.contour_plot(
        'validation_Biso_v_resolution',
        lines,
        xlabel='resolution (Angstrom)',
        ylabel='<Biso>',
        bool_remove=False,
    )

    return
def plot():

    fd = open('Biso_v_resolution.gnuplotdata','r')
    lines = fd.readlines()
    fd.close()
    d_splot = {}
    l_resolution = []
    l_Biso = []
    for line in lines:
        l = line.split()
        resolution = float(l[1])
        Biso = float(l[0])
        resolution_rounded = round(resolution,1)
##        resolution_rounded = 0.1*round(resolution/0.1,0)
        Biso_rounded = round(Biso,0)
        if not resolution_rounded in d_splot.keys():
            d_splot[resolution_rounded] = {}
        if not Biso_rounded in d_splot[resolution_rounded].keys():
            d_splot[resolution_rounded][Biso_rounded] = 0
        d_splot[resolution_rounded][Biso_rounded] += 1
        l_resolution += [resolution]
        l_Biso += [Biso]
    a,b,r,p = statistics.do_regression(l_resolution,l_Biso,verbose=False,)
    print 'correlation = r =', r
    tcrit = 1.960 ## 95% confidence 2 tail (student table...)
##    tcrit = 76.
##    f,g,h = statistics.do_confidence_bands(l_resolution,l_Biso,tcrit,)

    lines = []
##    for resolution in range(5,35+1):
    for resolution in range(5,35+1):
        resolution /= 10.
        for Biso in range(0,100+1):
            Biso /= 1.
            if not resolution in d_splot.keys():
                count = 0
            elif not Biso in d_splot[resolution].keys():
                count = 0
            else:
                count = d_splot[resolution][Biso]
            lines += ['%s %s %s\n' %(resolution,Biso,count,)]
        lines += ['\n']

    gnuplot.contour_plot(
        'validation_Biso_v_resolution',lines,
        xlabel='resolution (Angstrom)',ylabel='<Biso>',
        bool_remove = False,
        )

    return
lines = fd.readlines()
fd.close()
d_resolution = {}
for line in lines:
    l = line.strip().split()
    pdb = l[0]
    v = l[1]
    if v == "['.']":
        continue
    if float(v[2:-2]) > 5.0:
##        print pdb, 'resolution', v
        continue
    d_resolution[pdb] = v

l_MV = []
l_resolution = []
lines_gnuplot = []
set_pdbs = set(d_MV.keys())&set(d_resolution.keys())
for pdb in set_pdbs:
    MV = float(d_MV[pdb])
    resolution = float(d_resolution[pdb][2:-2])
    l_MV += [MV]
    l_resolution += [resolution]
    lines_gnuplot += ['%s %s\n' %(resolution,MV,)]

t = statistics.do_regression(l_resolution,l_MV)

fd = open('tmp.txt','w')
fd.writelines(lines_gnuplot)
fd.close()
Example #4
0
for line in lines:
    l = line.strip().split()
    pdb = l[0]
    v = l[1]
    if v == "['.']":
        continue
    if float(v[2:-2]) > 5.0:
        ##        print pdb, 'resolution', v
        continue
    d_resolution[pdb] = v

l_MV = []
l_resolution = []
lines_gnuplot = []
set_pdbs = set(d_MV.keys()) & set(d_resolution.keys())
for pdb in set_pdbs:
    MV = float(d_MV[pdb])
    resolution = float(d_resolution[pdb][2:-2])
    l_MV += [MV]
    l_resolution += [resolution]
    lines_gnuplot += ['%s %s\n' % (
        resolution,
        MV,
    )]

t = statistics.do_regression(l_resolution, l_MV)

fd = open('tmp.txt', 'w')
fd.writelines(lines_gnuplot)
fd.close()