def modeConflict(track, list, type):
    popup = tk.Toplevel()
    popup.title(type.capitalize() + 'Conflict')
    popup.configure(bg=bg)
    ws = popup.winfo_screenwidth()  # width of the screen
    hs = popup.winfo_screenheight()  # height of the screen
    initialWidth = 550
    y = (hs / 2) - (297 / 2)
    for i in range(len(multimode(list))): initialWidth += (len(multimode(list)[i])) * 7
    x = (ws / 2) - (initialWidth / 2)
    popup.geometry('%dx%d+%d+%d' % (initialWidth, 270, x, y))
    tk.Label(popup, text=type.capitalize() + " Conflict", font=("Proxima Nova Rg", 13), fg="white", bg=bg).pack(side="top", pady=(30, 15))
    tk.Label(popup, text="The search returned more than one " + type, font=("Proxima Nova Rg", 11), fg="white", bg=bg).pack(side="top", pady=(10, 10))
    tk.Label(popup, text=track.artist + ' - ' + track.title, font=("Proxima Nova Rg", 11), fg="white", bg=bg).pack(side="top", pady=(0, 30))
    radioFrame = tk.Frame(popup)
    radioFrame.config(bg=bg)
    radioFrame.pack()
    selection = tk.StringVar()
    selection.set(None)
    for i in range(len(multimode(list))):
        option = tk.Radiobutton(radioFrame, variable=selection, value=multimode(list)[i], command=lambda i=i: selectOption(track, multimode(list), i, selection, selectButton, type), activebackground=bg, selectcolor=bg, bg=bg, fg="white")
        option.deselect()
        option.pack(padx=(20, 0), side="left")
        tk.Label(radioFrame, text=multimode(list)[i], font=("Proxima Nova Rg", 11), fg="white", bg=bg).pack(side="left")
    selectButton = tk.Button(popup, text="Select", font=("Proxima Nova Rg", 11), state=tk.DISABLED, fg="white", bg=bg, command=popup.destroy)
    selectButton.pack(pady=(30, 0))
    original = ''
    if type == "genre": original = track.genre
    elif type == "key": original = track.key
    popup.attributes("-topmost", True)
    popup.protocol("WM_DELETE_WINDOW", lambda track=track, popup=popup, value=original: onExit(track, value, popup, type))
    popup.wait_window()
def handleTrackReport(track, audio, filename, webScrapingWindow, characters, options, initialCounter, imageCounter, images, informalTagDict):
    conflict = False
    # check year for false values
    if "Release_Date" in options["Selected Tags (L)"] and len(track.yearList) != 0:
        commonYearList = [word for word, word_count in Counter(track.yearList).most_common(5)]
        commonYear = commonYearList[0]
        if len(commonYearList) > 1:
            for i in range(len(commonYearList) - 1):
                # prioritize older years to avoid quoting re-releases
                if len(track.yearList) <= 5 and int(commonYearList[0]) > int(commonYearList[i + 1]) and track.yearList.count(commonYearList[0]) <= track.yearList.count(commonYearList[i + 1]) * 2: commonYear = commonYearList[i + 1]
                elif int(commonYearList[0]) > int(commonYearList[i + 1]) and track.yearList.count(commonYearList[0]) <= track.yearList.count(commonYearList[i + 1]) * 1.5 and track.yearList.count(commonYearList[0]) > 1: commonYear = commonYearList[i + 1]
        if track.release_date != str(commonYear):
            track.release_date = str(commonYear)
            conflict = True
    # check BPM for false values
    if "BPM" in options["Selected Tags (L)"] and len(track.BPMList) != 0:
        commonBPMList = ([word for word, word_count in Counter(track.BPMList).most_common(3)])
        commonBPM = commonBPMList[0]
        if len(commonBPMList) > 1 and int(commonBPMList[0]) * 2 == int(commonBPMList[1]) and int(commonBPMList[0]) < 85: commonBPM = commonBPMList[1]
        if track.bpm != str(commonBPM):
            track.bpm = str(commonBPM)
            conflict = True
    if "Key" in options["Selected Tags (L)"] and len(track.keyList) != 0:
        if len(multimode(track.keyList)) == 1:
            if track.key != str(mode(track.keyList)):
                track.key = str(mode(track.keyList))
                conflict = True
        else:
            modeConflict(track, track.keyList, "key")
            conflict = True
    if "Genre" in options["Selected Tags (L)"] and len(track.genreList) != 0:
        if len(multimode(track.genreList)) == 1:
            if track.genre != str(mode(track.genreList)):
                track.genre = str(mode(track.genreList))
                conflict = True
        else:
            modeConflict(track, track.genreList, "genre")
            conflict = True

    # update audio tags
    if conflict == True or imageCounter > 0:
        if filename.endswith(".flac"): FLAC_conflict(audio, track, options, initialCounter, imageCounter, images, informalTagDict)
        elif filename.endswith(".aiff") or filename.endswith(".mp3") or filename.endswith(".wav"): ID3_conflict(audio, track, options, initialCounter, imageCounter, images, informalTagDict)
        elif filename.endswith(".ogg"): Vorbis_conflict(audio, track, options, initialCounter, imageCounter, images, informalTagDict)
        elif filename.endswith(".m4a"): M4A_conflict(audio, track, options, initialCounter, imageCounter, images, informalTagDict)
    if len(str(track.artist) + " - " + str(track.title)) > characters: characters = len(str(track.artist) + " - " + str(track.title))

    title = str(track.artist) + " - " + str(track.title)
    results = ""
    if "Release_Date" in options["Selected Tags (L)"]: results += "\nYear: " + str(track.release_date)
    if "BPM" in options["Selected Tags (L)"]: results += "\nBPM: " + str(track.bpm)
    if "Key" in options["Selected Tags (L)"]: results += "\nKey: " + str(track.key)
    if "Genre" in options["Selected Tags (L)"]: results += "\nGenre: " + str(track.genre)
    return title, results, webScrapingWindow, characters, track.imageSelection
Example #3
0
def part2(input_list):
    co2 = input_list
    oxy = input_list
    o = 0
    c = 0
    for i in range(len(input_list[0])):
        if len(co2) != 1:
            most = max(multimode([row[i] for row in co2]))
            co2 = [row for row in co2 if row[i] == most]
        if len(oxy) != 1:
            most = max(multimode([row[i] for row in oxy]))
            oxy = [row for row in oxy if row[i] != most]
    o = int(oxy[0], 2)
    c = int(co2[0], 2)
    return o * c
Example #4
0
def part2(input):
	o2set = set(range(0,len(input)))
	co2set = set(range(0,len(input)))	
	bit_index = 0
	new_list = input[:]
	while len(o2set)>1:
		old_list = new_list[:]
		new_list = []
		for item in o2set:
			new_list.append(old_list[item])
		transformed = [list(map(int, i)) for i in zip(*new_list)]
		multimodelist = statistics.multimode(transformed[bit_index])
		most = multimodelist[-1]
		o2set = set(range(0,len(new_list)))
		o2setcopy = o2set.copy()
		for i in o2setcopy:
			if (transformed[bit_index][i]!=most):
				o2set.remove(i)

		bit_index+=1



	o2 = int(new_list[list(o2set)[0]],2)

	bit_index = 0
	new_list = input[:]
	while len(co2set)>1:
		old_list = new_list[:]
		new_list = []
		for item in co2set:
			new_list.append(old_list[item])
		transformed = [list(map(int, i)) for i in zip(*new_list)]
		multimodelist = statistics.multimode(transformed[bit_index])
		most = multimodelist[0]

		co2set = set(range(0,len(new_list)))
		co2setcopy = co2set.copy()

		for i in co2setcopy:

			if (transformed[bit_index][i]==most):
				co2set.remove(i)
		bit_index+=1

	co2 = int(new_list[list(co2set)[0]],2)

	return o2 * co2
Example #5
0
 def _modes(self):
     """
     Returns as a list. Use "def pretty_modes"
     below for returning strings.
     """
     modes = multimode(self.rolls_simulation)
     return modes
def stats():
    listNum = int(input('How many numbers in your list?:'))
    nums = []
    for i in range(listNum):
        nums.append(int(input("")))

    op = input('What kind of operation would you like to do?\
        \nChoose between "mode, mean, gmean, hmean, median, range, stdev" : ')

    if op == 'mode':
        return statistics.multimode(nums)

    elif op == 'mean':
        return statistics.mean(nums)

    elif op == 'gmean':
        return statistics.geometric_mean(nums)

    elif op == 'hmean':
        return statistics.harmonic_mean(nums)

    elif op == 'median':
        return statistics.median(nums)

    elif op == 'stdev':
        return statistics.stdev(nums)

    elif op == 'range':
        return max(nums) - min(nums)
def commonmedicine(patients, matchindexes, k):

    medicine = []
    count = 0

    for i in matchindexes:
        medicine.insert(count, patients[i][6])
        count += 1

    modes = statistics.multimode(medicine)
    biggest = medicine.count(modes[0])

    #TODO
    if (len(modes) == k):
        print("Each of the %d patients were given a different medication" % k)
    elif (biggest >= float(k / 2)):
        print(
            "Medicine %d was given to %d of the %d patients (a majority of the patients)"
            % (int(modes[0]), biggest, k))
    elif (len(modes) == 1):
        print(
            "Medicine %d was given to %d of the %d patients (not a majority of the patients)"
            % (int(modes[0]), biggest, k))
    else:
        print(
            "Medicines %s were each given to %d of the %d patients (not a majority of the patients)"
            % (modes, biggest, k))
Example #8
0
 def countLargestGroup(self, n: int) -> int:
     """
     Elegant but not very efficient solution.
     1 - multiple transition between str and int types
     2 - 'multimode' is very complex method (uses sorting, grouping, etc.)
     """
     return len(multimode(sum(map(int, str(i))) for i in range(1, n + 1)))
Example #9
0
def calculateMode(data):
    global mode
    ints = [int(item) for item in data]
    modeList = statistics.multimode(ints)
    mode = ""
    for item in modeList:
        mode += str(item) + ", "
    mode = mode[:-2]
 def countLargestGroup(self, n):
     """
     :type n: int
     :rtype: int
     """
     return len(
         statistics.multimode(
             sum(map(int, str(i))) for i in range(1, n + 1)))
Example #11
0
def minK(k, distances, pointSet):
    closestK = []
    for i in range(2 * k - 1):
        for index in nthMinIndex(i, distances):
            closestK.append(pointSet[index][1])
    try:
        return multimode(closestK)[0]
    except Exception:
        return 0
Example #12
0
def co2_bit_criteria(data: str):
    report = data.splitlines()
    for pos in range(len(report[0])):
        col = [line[pos] for line in report]
        target = {"0": "1", "1": "0"}[max(multimode(col))]
        report = [line for line in report if line[pos] == target]
        if len(report) <= 1:
            return int(report[0], 2)
    raise ValueError(data)
Example #13
0
def get_mode(k_nearest_labels: list) -> int:
    """
     this function calculate mode for k_nearest_labels

    The mode of a sequence of numbers is the number with the highest frequency
    
    """
    k_nearest_labels = [j for i in k_nearest_labels for j in i]
    k_nearest_labels = multimode(k_nearest_labels)
    return random.choice(k_nearest_labels)
Example #14
0
def baseline_accuracy_row(brands_list, row):
    preds = []
    for brand in brands_list:
        matches = find_brands(brand, row["transcription"])
        for _ in matches:
            preds.append(brand)
    # now find most common value(s)
    preds = statistics.multimode([s.lower().replace("-", " ") for s in preds])
    correct = any(equal_brands(pred, row["brand"]) for pred in preds)
    return pd.Series([preds, correct], index=["bl_preds", "bl_corrects"])
def migratoryBirds(arr):
    """
    Determines the lowest, most frequent number.

    Parameters:
    arr (list): A list of integers.
    
    Returns:
    integer: The minimum mode.
    """
    return min(multimode(arr))
def vote(df: pd.DataFrame, col_name: str) -> (Union[list, str], int, int):
    total = df.shape[0]

    voted = multimode(list(df.loc[:, col_name]))

    voted_count = df[df[col_name] == voted[0]].shape[0]

    if len(voted) == 1:  # single mode value
        voted = voted[0]

    return voted, voted_count, total
Example #17
0
def singlemode(data):
    try:
        # New in Python 3.8
        modes = statistics.multimode(data)
    except AttributeError:
        return statistics.mode(data)
    else:
        if len(modes) > 1:
            raise statistics.StatisticsError('no unique mode')
        else:
            return modes[0]
Example #18
0
def CalcularModa(
        datos):  #Funcion para calcular la moda mediante la libreria statics
    try:  #Intenta
        MM = stats.multimode(
            datos
        )  #Dentro de MM se guarda la multimoda calculada con stats.multimode pasandole los datos
        M = stats.mode(
            datos
        )  #Dentro de M se guarda la moda calculada con stats.mode pasandole los datos
        return [["Multimoda", MM], ["Moda", M]]
    except:  #De lo contrario arroja error
        print("ERROR - No se pueden ejecutar la funcion con los datos")
def top():
    #Call datebase to refresh data in route
    movie_list = datebase()
    top_10 = []
    temporary_list = movie_list[:]
    #Check of temporary_list have more positions than temporary_set. If yes that means that at least
    #one movie have more recommendations than other movies
    temporary_set = set(temporary_list)
    #Check of there is at least on title with more than on recommendation
    if len(temporary_list) != len(list(temporary_set)):
        if len(temporary_set) >= 10:
            while len(top_10) != 10:
                if multimode(temporary_list):
                    # There can be more than one movie with the same number of recommendations
                    for movie in multimode(temporary_list):
                        number_of_recommendations = 0
                        #Delete all accourances from temporary_list to find another most common occurance
                        while movie in temporary_list:
                            number_of_recommendations += 1
                            temporary_list.remove(movie)
                        top_10.append([movie, number_of_recommendations])
                        #Solve problem if there are for exemple all 9 movies in top_10 and multimode gives
                        #2 or more movies to add
                        if len(top_10) == 10:
                            break
        else:
            #If there is less than 10 movies in the datebase:
            while len(top_10) != len(temporary_set):
                if multimode(temporary_list):
                    for movie in multimode(temporary_list):
                        number_of_recommendations = 0
                        #Delete all accourances from temporary_list to find another most common occurance
                        while movie in temporary_list:
                            number_of_recommendations += 1
                            temporary_list.remove(movie)
                        top_10.append([movie, number_of_recommendations])
    return top_10
Example #20
0
def part_2(file_path: str) -> int:
    with open(file_path, "r") as f:
        lines = f.read().splitlines()
    ox, co2, l = 0, 0, len(lines[0])

    ox_lines = lines
    for i in range(l):
        multimode = statistics.multimode([line[i] for line in ox_lines])
        mode = multimode[0] if len(multimode) == 1 else "1"
        ox_lines = [line for line in ox_lines if line[i] == mode]
        if len(ox_lines) == 1:
            ox = int(ox_lines[0], 2)
            break

    co2_lines = lines
    for i in range(l):
        multimode = statistics.multimode([line[i] for line in co2_lines])
        mode = multimode[0] if len(multimode) == 1 else "1"
        co2_lines = [line for line in co2_lines if line[i] == f"{1-int(mode)}"]
        if len(co2_lines) == 1:
            co2 = int(co2_lines[0], 2)
            break

    return ox * co2
Example #21
0
    def analyze_categorical():
        result['type'] = 'categorical'

        mode = statistics.multimode(actual_values)
        m1 = mode[0]
        result['mode 1'] = m1

        result['mode 1 %'] = actual_values.count(m1) / len(actual_values)

        if len(mode) > 1:
            m2 = mode[1]

            result['mode 2'] = m2
            result['mode 2 %'] = actual_values.count(m2) / len(actual_values)

        return result
def compute_top_songs_theory_helper(theory_dictionary):
    """Returns theory data on a user's top songs over a given time range 
    :param theory_dictionary: keys refer to music theory features, values refer to a list of ints about the feature in user's top songs
    :type theory_dictionary: dictionary 

    :rtype: dictionary
    :return: a sorted dictionary with both the song IDs (key) and song names (value)
    """
    for feature in theory_dictionary:
        if feature == "key" or feature == "mode":
            # find the multimode (all "tied" elements are added into a list)
            theory_dictionary[feature] = multimode(theory_dictionary[feature])
        else:
            # find the mean, round to 2 decimals
            theory_dictionary[feature] = round(
                sum(theory_dictionary[feature]) /
                len(theory_dictionary[feature]), 2)
    return theory_dictionary
Example #23
0
def get_total_requests_in_sqs():
    """
    Runs a loop to find the Request queue sizes and takes a Mode over them to get the approximate size of queue
    :return: Size of the request queue in int.
    """
    try:
        time.sleep(1)
        size_values = []
        for _ in range(5):
            size_values.append(int(mq.get_queue_size(s.REQUEST_QUEUE)))

        logger.info("List of queue sizes fetched from SQS cluster: " +
                    " ".join(str(value) for value in size_values))
        approx_size = multimode(size_values)[0]
        logger.info("Approx size of Queue: %s", approx_size)
    except ClientError as error:
        raise error
    else:
        return approx_size
Example #24
0
    def most_frequent(self):
        self.chain_code_mode = []
        col = 0
        print(self.chain_codes.shape)
        print(self.chain_codes.shape[1])
        while (col != self.chain_codes.shape[1]):
            aux = self.chain_codes.transpose()[col]
            # print(aux)
            value = statistics.multimode(aux)
            # print(value)
            if (len(value) == 1):
                self.chain_code_mode.append(value[0])
            else:
                rand = random.randint(0, 1)
                self.chain_code_mode.append(value[rand])
            col = col + 1

        print(self.chain_code_mode)
        return (self.chain_code_mode)
def get_mode(k_nearest_labels: list) -> int:
    """
     this function calculate mode for k_nearest_labels

    The mode of a sequence of numbers is the number with the highest frequency
    (the one which repeats the most).

    Parameters
    ----------
    k_nearest_labels : list
        matrix of data(list of lists)
    Retunrs
    -------
    int
        mode of k_nearest_labels
    """
    k_nearest_labels = [j for i in k_nearest_labels for j in i]
    k_nearest_labels = multimode(k_nearest_labels)
    return random.choice(k_nearest_labels)
Example #26
0
def simple_stats():
    mean_list = statistics.mean(list_of_values)
    print("mean_list : ", mean_list)
    geometric_mean_list = statistics.geometric_mean(list_of_values)
    print("geometric_mean_list : ", geometric_mean_list)
    harmonic_mean_list = statistics.harmonic_mean(list_of_values)
    print("harmonic_mean_list : ", harmonic_mean_list)
    median_list = statistics.median(list_of_values)
    print("median_list : ", median_list)
    median_low_list = statistics.median_low(list_of_values)
    print("median_low_list : ", median_low_list)
    median_high_list = statistics.median_high(list_of_values)
    print("median_high_list : ", median_high_list)
    median_grouped_list = statistics.median_grouped(list_of_values)
    print("median_grouped_list : ", median_grouped_list)
    mode_list = statistics.mode(list_of_values)
    print("mode_list : ", mode_list)
    multimode_list = statistics.multimode(list_of_values)
    print("multimode_list : ", multimode_list)
    quantiles_list = statistics.quantiles(list_of_values)
    print("quantiles_list : ", quantiles_list)
    return mean_list, geometric_mean_list, harmonic_mean_list, median_list, median_low_list, median_high_list, median_grouped_list, mode_list, multimode_list, quantiles_list
def checkio(text: str) -> str:
    lowertext=list(text.lower())
    for x in lowertext[:]:
        if ord(x) < 65:
            lowertext.remove(x)            
    return min(statistics.multimode(lowertext))
    
    #END OF MY CODE, THE REST IS THEIR TESTING
    if __name__ == '__main__':
    print("Example:")
    print(checkio("Hello World!"))

    #These "asserts" using only for self-checking and not necessary for auto-testing
    assert checkio("Hello World!") == "l", "Hello test"
    assert checkio("How do you do?") == "o", "O is most wanted"
    assert checkio("One") == "e", "All letter only once."
    assert checkio("Oops!") == "o", "Don't forget about lower case."
    assert checkio("AAaooo!!!!") == "a", "Only letters."
    assert checkio("abe") == "a", "The First."
    print("Start the long test")
    assert checkio("a" * 9000 + "b" * 1000) == "a", "Long."
    print("The local tests are done.")
Example #28
0
def run():
    data = read_data()
    sales = []
    for row in data:
        print(row)
#put the print function into the loop so you can see which keys the data set has and fix an error messages
#relating to a key issue --> key error
        sale = int(row['Sales'])
        sales.append(sale)
    total = sum(sales)
    minimum = min(sales)
    maximum = max(sales)
    average = mean(sales)
    Middepoint = median(sales)
    Modes = multimode(sales)
    SampleSpread = stdev(sales)
    print('Total sales: {}' .format(total))
    print('Minimum sales: {}' .format(minimum))
    print('Maximum sales: {}' .format(maximum))
    print('Arithmetic Mean: {}' .format(average))
    print('Ordinary Statistical Median: {}' .format(Middepoint))
    print('Total Modes: {}' .format(Modes))
    print('Sample Dispersion: {}' .format(SampleSpread))
def run():
    data = read_data()
    covid = []
    for row in data:
        print(row)
#put the print function into the loop so you can see which keys the data set has and fix an error messages
#relating to a key issue --> key error
        coviddeaths = int(row['6/22/20'])
        covid.append(coviddeaths)
    total = sum(covid)
    minimum = min(covid)
    maximum = max(covid)
    average = mean(covid)
    Middepoint = median(covid)
    Modes = multimode(covid)
    SampleSpread = stdev(covid)
    print('Total deaths: {}' .format(total))
    print('Minimum deaths: {}' .format(minimum))
    print('Maximum deaths: {}' .format(maximum))
    print('Arithmetic Mean: {}' .format(average))
    print('Ordinary Statistical Median: {}' .format(Middepoint))
    print('Total Modes: {}' .format(Modes))
    print('Sample Dispersion: {}' .format(SampleSpread))
Example #30
0
for i in range(n - 1):
    diff.append(values[i + 1] - values[i])
diff_len = len(set(diff))
if n == 1:
    print(-1)
elif diff_len == 1:
    if diff[0] == 0:
        works = [values[-1] + diff[0]]
        print(len(works))
        print(*sorted(works))
    else:
        works = [values[0] - diff[0], values[-1] + diff[0]]
        if n == 2:
            if not (values[0] + values[1]) % 2:
                works.append((values[0] + values[1]) // 2)
        print(len(works))
        print(*sorted(works))
elif diff_len == 2:
    common, works = min(statistics.multimode(diff)), []
    if common:
        for i in range(1, n):
            if values[i - 1] + common == values[i] - common:
                works.append(values[i - 1] + common)
    if len(works) > 1:
        works = []
    print(len(works))
    if works:
        print(*sorted(works))
else:
    print(0)