def get_cr(): print("Getting CR stats") data = get_stats() # todo: enqueue every row to metric processor # transform # filter out = (seq(data) .map(lambda row: row['Stat']) .filter(lambda row: ( int(row['clicks']) >= get_offer_min_clicks(row['offer_id']))) .filter(lambda row: ( offer_exists_and_monitoring_true(row['offer_id']))) .map(lambda row: update_in(row, ['clicks'], int)) .map(lambda row: update_in(row, ['conversions'], int)) .map(lambda row: ( assoc(row, 'value', cr(row['clicks'], row['conversions'])))) .to_list()) metric = Metric.objects.get(key='cr') for row in out: metric_log = MetricLog() metric_log.offer_id = row['offer_id'] metric_log.affiliate_id = row['affiliate_id'] metric_log.metric = metric metric_log.value = row['value'] metric_log.save() celery_pubsub.publish('metric.loaded', metric_log)
def get_capfill(): print("Gettings CAP stats") prefs = get_prefs() res = get_stats(prefs['lookback']) out = (seq(res.data['data']) .map(lambda row: row['Stat']) # .filter(lambda row: int(row['clicks']) >= min_clicks) .filter(lambda row: ( offer_exists_and_monitoring_true(row['offer_id']))) .map(lambda row: update_in(row, ['conversions'], int)) .map(lambda row: ( assoc(row, 'conversion_cap', get_conversion_cap(row['offer_id'], row['affiliate_id'])))) .filter(lambda row: row['conversion_cap'] > 0) .map(lambda row: ( assoc(row, 'value', ((row['conversions'] / prefs['lookback']) / row['conversion_cap'])))) .to_list()) metric = Metric.objects.get(key='cap_fill') for row in out: metric_log = MetricLog() metric_log.offer_id = row['offer_id'] metric_log.affiliate_id = row['affiliate_id'] metric_log.metric = metric metric_log.value = row['value'] metric_log.save() celery_pubsub.publish('metric.loaded', metric_log)
def get_cr(): res = get_stats() out = (seq(res.data['data']) .map(lambda row: row['Stat']) .filter(lambda row: int(row['clicks']) >= get_offer_min_clicks(row['offer_id'])) .filter(lambda row: offer_exists_and_monitoring_true(row['offer_id'])) .map(lambda row: update_in(row, ['clicks'], int)) .map(lambda row: update_in(row, ['conversions'], int)) .map(lambda row: assoc(row, 'value', cr(row['clicks'], row['conversions']))) .to_list()) metric = Metric.objects.get(key='cr') for row in out: metric_log = MetricLog() metric_log.offer_id = row['offer_id'] metric_log.affiliate_id = row['affiliate_id'] metric_log.metric = metric metric_log.value = row['value'] metric_log.save() min_cr_trigger.delay(metric_log) max_cr_trigger.delay(metric_log)
def get_gr(): offer_ids = fetch_active_offers() offer_ids = list(filter(offer_exists_and_monitoring_true, offer_ids)) offer_ids = list(filter(offer_has_goal, offer_ids)) for offer_id in offer_ids: offer = Offer.objects.get(pk=offer_id) # get stats for the offer stats = get_stats(offer_id, offer.one_goal_id, offer.lookback) out = (seq(stats) .map(lambda row: update_in(row, ['conversions'], int)) .map(lambda row: update_in(row, ['goal_id'], int)) .map(lambda row: update_in(row, ['affiliate_id'], int)) .to_list()) conversions = seq(out).filter(lambda r: r['goal_id'] == 0).to_list() # [{aff_id, conversions, goal_id}] goals = seq(out).filter(lambda r: r['goal_id'] == offer.one_goal_id).to_list() # filter min_conversions conversions = seq(conversions).filter(lambda r: r['conversions'] >= offer.min_conversions).to_list() # populate with goal count conversions = (seq(conversions) .map(lambda r: assoc(r, 'goals', get_goals_count(r['affiliate_id'], goals))) .to_list()) # populate with gr value conversions = (seq(conversions) .map(lambda r: assoc(r, 'value', gr(r['conversions'], r['goals']))) .to_list()) # create metric metric = Metric.objects.get(key='gtr') for row in conversions: metric_log = MetricLog() metric_log.offer_id = offer_id metric_log.affiliate_id = row['affiliate_id'] metric_log.metric = metric metric_log.value = row['value'] metric_log.save() # run trigger worker min_gr_trigger.delay(metric_log)
def get_pacc(): api = Hasoffers(network_token=settings.HASOFFERS_NETWORK_TOKEN, network_id=settings.HASOFFERS_NETWORK_ID, proxies=settings.PROXIES) from_date = datetime.datetime.now(pytz.timezone( settings.TIME_ZONE)) - datetime.timedelta(days=1) res = api.Report.getStats(fields=['Stat.gross_clicks', 'Stat.profit'], groups=['Stat.offer_id', 'Stat.affiliate_id'], filters={ 'Stat.date': { 'conditional': 'GREATER_THAN_OR_EQUAL_TO', 'values': str(from_date.date()) }, 'Stat.hour': { 'conditional': 'GREATER_THAN_OR_EQUAL_TO', 'values': from_date.hour } }, limit=10000) out = (seq( res.data['data']).map(lambda row: row['Stat']).filter(lambda row: int( row['gross_clicks']) >= get_offer_min_clicks(row['offer_id'])). filter(lambda row: offer_exists_and_monitoring_true(row['offer_id']) ).map(lambda row: update_in(row, ['profit'], float)). map(lambda row: update_in(row, ['gross_clicks'], int)).map( lambda row: assoc(row, 'value', (row['profit'] - (row[ 'gross_clicks'] * settings.CLICK_COST)))).to_list()) metric = Metric.objects.get(key='pacc') for row in out: metric_log = MetricLog() metric_log.offer_id = row['offer_id'] metric_log.affiliate_id = row['affiliate_id'] metric_log.metric = metric metric_log.value = row['value'] metric_log.save() pacc_trigger.delay(metric_log)
def get_clicks_if_zero_conv(): print("Getting Clicks stats") api = Hasoffers(network_token=settings.HASOFFERS_NETWORK_TOKEN, network_id=settings.HASOFFERS_NETWORK_ID, proxies=settings.PROXIES) from_date = (datetime.datetime.now(pytz.timezone(settings.TIME_ZONE)) - datetime.timedelta(days=1)) res = api.Report.getStats(fields=['Stat.clicks', 'Stat.conversions'], groups=['Stat.offer_id', 'Stat.affiliate_id'], filters={ 'Stat.date': { 'conditional': 'GREATER_THAN_OR_EQUAL_TO', 'values': str(from_date.date()) }, 'Stat.hour': { 'conditional': 'GREATER_THAN_OR_EQUAL_TO', 'values': from_date.hour } }, limit=10000) out = (seq( res.data['data']).map(lambda row: row['Stat']).filter(lambda row: (int( row['clicks']) >= get_offer_min_clicks(row['offer_id']))).filter( lambda row: (offer_exists_and_monitoring_true(row['offer_id'])) ).map(lambda row: update_in(row, ['conversions'], int)).map( lambda row: update_in(row, ['clicks'], int)).filter( lambda row: row['conversions'] == 0).map(lambda row: assoc( row, 'value', row['clicks'])).to_list()) metric = Metric.objects.get(key='clicks_zero_conv') for row in out: metric_log = MetricLog() metric_log.offer_id = row['offer_id'] metric_log.affiliate_id = row['affiliate_id'] metric_log.metric = metric metric_log.value = row['value'] metric_log.save() celery_pubsub.publish('metric.loaded', metric_log)