def k_COV_plots(k_arr, COV_arr): sig_max_arr = np.zeros((len(k_arr), len(COV_arr))) wmax_arr = np.zeros((len(k_arr), len(COV_arr))) mu_r, mu_tau = 0.01, 0.1 for i, k in enumerate(k_arr): for j, cov in enumerate(COV_arr): Vf = Vf_k(k) loc_r = mu_r * (1 - cov * np.sqrt(3.0)) scale_r = cov * 2 * np.sqrt(3.0) * mu_r loc_tau = mu_tau * (1 - cov * np.sqrt(3.0)) scale_tau = cov * 2 * np.sqrt(3.0) * mu_tau reinf = ContinuousFibers(r=RV('uniform', loc=loc_r, scale=scale_r), tau=RV('uniform', loc=loc_tau, scale=scale_tau), xi=WeibullFibers(shape=7.0, sV0=0.003), V_f=Vf, E_f=200e3, n_int=100) ccb_view.model.reinforcement_lst = [reinf] sig_max, wmax = ccb_view.sigma_c_max sig_max_arr[i, j] = sig_max / Vf wmax_arr[i, j] = wmax ctrl_vars = orthogonalize([np.arange(len(k_arr)), np.arange(len(COV_arr))]) print sig_max_arr print wmax_arr mlab.surf(ctrl_vars[0], ctrl_vars[1], sig_max_arr / np.max(sig_max_arr)) mlab.surf(ctrl_vars[0], ctrl_vars[1], wmax_arr / np.max(wmax_arr)) mlab.show()
def plot(): w_arr = np.linspace(0.0, 0.1, 20) ll = 2.0 lr = 5.0 x = np.linspace(-ll, lr, 51) #resm, resf = ccb_post.w_x_results(w_arr, x) #eps_vars = orthogonalize([w_arr * 100., x]) #m.surf(eps_vars[0], eps_vars[1], resm * 500.) #m.surf(eps_vars[0], eps_vars[1], resf * 500.) #m.show() sigma = ir.load_sigma_c_arr eps_vars = orthogonalize([np.linspace(0.0, 0.0254229525299, len(sigma)) * 100., x]) # mu_q_nisp = nisp(P, x, Ll, Lr)[0] mu_epsm = ir.interpolator_epsm(sigma, x, 100., 100.) mu_epsf = ir.interpolator_mu_epsf(sigma, x, 100., 100.) sig_c = ir.interpolator_mu_sigma_c(sigma, x, 100., 100.) #mu_q_isp2 = ir(sigma, x, Ll, Lr) # plt.plot(np.arange(len(sigma)), sigma/0.0103) # plt.plot(np.arange(len(sigma)), np.max(mu_q_isp,axis = 0)) # plt.show() # n_mu_q_arr = mu_q_nisp / np.max(np.fabs(mu_q_nisp)) m.surf(eps_vars[0], eps_vars[1], mu_epsm * 500.) m.surf(eps_vars[0], eps_vars[1], mu_epsf * 500.) m.surf(eps_vars[0], eps_vars[1], sig_c /(25e3*0.85 + 200e3*0.15)*500) m.show()
def k_COV_plots(k_arr, COV_arr): sig_max_arr = np.zeros((len(k_arr), len(COV_arr))) wmax_arr = np.zeros((len(k_arr), len(COV_arr))) mu_r, mu_tau = 0.01, 0.1 for i, k in enumerate(k_arr): for j, cov in enumerate(COV_arr): Vf = Vf_k(k) loc_r = mu_r * (1 - cov * np.sqrt(3.0)) scale_r = cov * 2 * np.sqrt(3.0) * mu_r loc_tau = mu_tau * (1 - cov * np.sqrt(3.0)) scale_tau = cov * 2 * np.sqrt(3.0) * mu_tau reinf = ContinuousFibers(r=RV('uniform', loc=loc_r, scale=scale_r), tau=RV('uniform', loc=loc_tau, scale=scale_tau), xi=WeibullFibers(shape=7.0, sV0=0.003), V_f=Vf, E_f=200e3, n_int=100) ccb_view.model.reinforcement_lst = [reinf] sig_max, wmax = ccb_view.sigma_c_max sig_max_arr[i, j] = sig_max/Vf wmax_arr[i, j] = wmax ctrl_vars = orthogonalize([np.arange(len(k_arr)), np.arange(len(COV_arr))]) print sig_max_arr print wmax_arr mlab.surf(ctrl_vars[0], ctrl_vars[1], sig_max_arr / np.max(sig_max_arr)) mlab.surf(ctrl_vars[0], ctrl_vars[1], wmax_arr / np.max(wmax_arr)) mlab.show()
def det_tau_r(E_f, V_f, m_list, mu_xi, dp_tau, dp_r, tau_range, r_range, sV0): w_arr = np.linspace(0, 20, 300) tau_arr = np.linspace(tau_range[0], tau_range[1], dp_tau) r_arr = np.linspace(r_range[0], r_range[1], dp_tau) e_arr = orthogonalize([tau_arr, r_arr]) x_axis = e_arr[0] y_axis = e_arr[1] for mi in m_list: res_array = np.zeros((dp_tau, dp_r)) for i_tau, taui in enumerate(tau_arr): for i_r, ri in enumerate(r_arr): s = get_scale(mu_xi, mi, taui, ri) print s #sV0 = float(s * (pi * mu_r ** 2) ** (1. / mi)) T = 2. * taui / ri s0 = ((T * (mi + 1) * sV0 ** mi) / (2. * E_f * pi * ri ** 2)) ** (1. / (mi + 1)) print s0 k = np.sqrt(T / E_f) ef0 = k * np.sqrt(w_arr) G = 1 - np.exp(-(ef0 / s0) ** (mi + 1)) mu_int = ef0 * E_f * V_f * (1 - G) I = s0 * gamma(1 + 1. / (mi + 1)) * gammainc(1 + 1. / (mi + 1), (ef0 / s0) ** (mi + 1)) mu_broken = E_f * V_f * I / (mi + 1) result = mu_int + mu_broken sigma_c = np.max(result) if sigma_c == result[-1]: print "w_arr too short" pass res_array[i_tau, i_r] = sigma_c mlab.surf(x_axis, y_axis, res_array / 100.) mlab.xlabel("det tau") mlab.ylabel("det r") mlab.zlabel("sigma") mlab.show()
def rand_r_det_tau( E_f, V_f, tau_range, CoV_r_range, mu_r , dp_tau, dp_r, sV0 ): m = m_list[0] s0 = ( ( mu_tau * ( m + 1 ) * sV0 ** m ) / ( E_f * pi * mu_r ** 3 ) ) ** ( 1. / ( m + 1 ) ) mu_xi = s0 * gamma( 1. + 1. / ( 1. + m ) ) #loop with rand tau and rand r for mi in m_list: ############## Pf = RV( 'uniform', loc = 0.0, scale = 1.0 ) w_arr = np.linspace( 0, 2.0, 30 ) cb = CBResidual( include_pullout = True ) tau_arr = np.linspace( tau_range[0], tau_range[1], dp_tau ) CoV_r_arr = np.linspace( 0.0001, 0.5, dp_r ) loc_r_arr = mu_r - CoV_r_arr * mu_r * 3 ** 0.5 scale_r_arr = 2 * mu_r - 2 * loc_r_arr e_arr = orthogonalize( [tau_arr, CoV_r_arr] ) x_axis = e_arr[0] y_axis = e_arr[1] stats_r = [] for s in range( dp_r ): stats_r.append( RV( 'uniform', loc = loc_r_arr[s], scale = scale_r_arr[s] ) ) #gen Tuple of [loc,scale] res_array = np.zeros( ( dp_tau, dp_r ) ) for i_tau, taui in enumerate( tau_arr ): for i_r, ri in enumerate( stats_r ): s0i = mu_xi / gamma( 1. + 1. / ( 1. + mi ) ) sV0i = ( ( s0i ** ( mi + 1 ) * E_f * pi * mu_r ** 3. ) / ( taui * ( mi + 1. ) ) ) ** ( 1. / mi ) total = SPIRRID( q = cb, sampling_type = 'MCS', evars = dict( w = w_arr ), tvars = dict( tau = taui, E_f = E_f, V_f = V_f, r = ri, m = mi, sV0 = sV0i, Pf = Pf ), n_int = 60 ) if isinstance( ri, RV ): r_arr = np.linspace( ri.ppf( 0.001 ), ri.ppf( 0.999 ), 200 ) Er = np.trapz( r_arr ** 2 * ri.pdf( r_arr ), r_arr ) else: Er = ri ** 2 result = total.mu_q_arr / Er sigma_c = np.max( result ) if sigma_c == result[-1]: print "w_arr too short" pass res_array[i_tau, i_r] = sigma_c #mayaviplot print np.max( res_array ) mlab.surf( x_axis, y_axis, res_array ) # mlab.view( 0., 0. ) mlab.xlabel( "det tau" ) mlab.ylabel( "rand r" ) mlab.zlabel( "sigma" ) mlab.show()
def rand_tau_det_r( E_f, V_f, CoV_tau_range, r_range, mu_tau , dp_tau, dp_r, sV0 ): m = m_list[0] s0 = ( ( mu_tau * ( m + 1 ) * sV0 ** m ) / ( E_f * pi * mu_r ** 3 ) ) ** ( 1. / ( m + 1 ) ) mu_xi = s0 * gamma( 1. + 1. / ( 1. + m ) ) for mi in m_list: ####################################### Pf = RV( 'uniform', loc = 0.0, scale = 1.0 ) w_arr = np.linspace( 0, 5, 300 ) cb = CBResidual( include_pullout = True ) # CoV generation CoV_tau_arr = np.linspace( CoV_tau_range[0], CoV_tau_range[1], dp_tau ) loc_tau_arr = mu_tau - CoV_tau_arr * mu_tau * 3 ** 0.5 scale_tau_arr = 2 * mu_tau - 2 * loc_tau_arr r_arr = np.linspace( r_range[0], r_range[1], dp_r ) e_arr = orthogonalize( [CoV_tau_arr, r_arr] ) x_axis = e_arr[0] y_axis = e_arr[1] #TAU gen Tuple of [loc,scale] stats_tau = [] for s in range( dp_tau ): stats_tau.append( RV( 'uniform', loc = loc_tau_arr[s], scale = scale_tau_arr[s] ) ) #r gen Tuple of [loc,scale] res_array = np.zeros( ( dp_tau, dp_r ) ) for i_tau, taui in enumerate( stats_tau ): for i_r, ri in enumerate( r_arr ): print i_tau, i_r s0i = mu_xi / gamma( 1. + 1. / ( 1. + mi ) ) sV0i = ( ( s0i ** ( mi + 1 ) * E_f * pi * ri ** 3. ) / ( mu_tau * ( mi + 1. ) ) ) ** ( 1. / mi ) total = SPIRRID( q = cb, sampling_type = 'MCS', evars = dict( w = w_arr ), tvars = dict( tau = taui, E_f = E_f, V_f = V_f, r = ri, m = mi, sV0 = sV0i, Pf = Pf ), n_int = 60 ) if isinstance( ri, RV ): r_arr = np.linspace( ri.ppf( 0.001 ), ri.ppf( 0.999 ), 200 ) Er = np.trapz( r_arr ** 2 * ri.pdf( r_arr ), r_arr ) else: Er = ri ** 2 #total(evars=dict(w=[3.])) x = [2.] x = np.array( x ) result = total.mu_q_arr / Er sigma_c = np.max( result ) if sigma_c == result[-1]: print "w_arr too short" res_array[i_tau, i_r] = sigma_c #mayaviplot mlab.surf( x_axis, y_axis * 50, res_array, warpscale = 0.1 ) mlab.view( 0., 0. ) mlab.xlabel( "rand tau" ) mlab.ylabel( "det r" ) mlab.zlabel( "sigma" ) mlab.show()
def m_effect(): m_xi_arr = np.linspace(1., 20., 15) m_tau_arr = np.linspace(0.3, 5.0, 10) try: res_file = open('res_m.pkl', 'rb') res_arr = pickle.load(res_file) res_file.close() # for res_part in res_arr: # plt.plot(m_xi_arr, res_part) # plt.show() eps_vars = orthogonalize([np.arange(15), np.arange(10)]) resCB = np.ones_like(res_arr) resMC = res_arr mlab.surf(eps_vars[0], eps_vars[1], resCB * 10) mlab.surf(eps_vars[0], eps_vars[1], resMC * 10) mlab.show() except: res_arr = [] for m_tau in m_tau_arr: strength_CB = [] strength_MC = [] for m_xi in m_xi_arr: wmCB, smCB = maxsigma( 1000., RV('weibull_min', shape=m_tau, scale=0.1, loc=0.0), m_xi) wmMC, smMC = maxsigma( 1., RV('weibull_min', shape=m_tau, scale=0.1, loc=0.0), m_xi) # w_CB = np.linspace(0.0,100./m**2,200) # w_MC = np.linspace(0.0,1.5/m**2,200) # plt.plot(wmCB, smCB, 'ro') # plt.plot(wmMC, smMC, 'bo') # sigma_c_CB = sigmac(w_CB, 1000., RV('weibull_min', shape=3.0, scale=0.1, loc=0.0), m) # sigma_c_MC = sigmac(w_MC, 1.0, RV('weibull_min', shape=3.0, scale=0.1, loc=0.0), m) # plt.plot(w_CB, sigma_c_CB, label='CB') # plt.plot(w_MC, sigma_c_MC, label='MC') # plt.show() strength_CB.append(smCB) strength_MC.append(smMC) CB_arr = np.ones_like(np.array([strength_CB])) MC_arr = np.array([strength_MC]) / np.array([strength_CB]) res_arr.append(MC_arr.flatten()) plt.plot(m_xi_arr, CB_arr.flatten(), lw=2., color='black') plt.plot(m_xi_arr, MC_arr.flatten(), label=str(m_tau) + ' MC') res_arr = np.array(res_arr) file_res = open('res_m.pkl', 'wb') pickle.dump(res_arr, file_res, -1) file_res.close() plt.legend(loc='best') plt.ylim(0) plt.show()
def random_domain(w): Ef = 70e3 Fxi = weibull_min(5., scale = 0.02) r = np.linspace(0.001, 0.005, 100) tau = np.linspace(0., 1., 100) e_arr = orthogonalize([np.arange(len(r)), np.arange(len(tau))]) tau = tau.reshape(1, len(tau)) r = r.reshape(len(r), 1) eps0 = np.sqrt(w * 2 * tau / r / Ef) F = Fxi.cdf(eps0) a = r * Ef / 2. / tau m.surf(e_arr[0], e_arr[1], 50 * F / np.max(F)) m.surf(e_arr[0], e_arr[1], 50 * eps0 / np.max(eps0)) m.surf(e_arr[0], e_arr[1], np.nan_to_num(a) / 100.) m.show()
def m_effect(): m_xi_arr = np.linspace(1., 20., 15) m_tau_arr = np.linspace(0.3, 5.0, 10) try: res_file = open('res_m.pkl', 'rb') res_arr = pickle.load(res_file) res_file.close() # for res_part in res_arr: # plt.plot(m_xi_arr, res_part) # plt.show() eps_vars = orthogonalize([np.arange(15), np.arange(10)]) resCB = np.ones_like(res_arr) resMC = res_arr mlab.surf(eps_vars[0], eps_vars[1], resCB * 10) mlab.surf(eps_vars[0], eps_vars[1], resMC * 10) mlab.show() except: res_arr = [] for m_tau in m_tau_arr: strength_CB = [] strength_MC = [] for m_xi in m_xi_arr: wmCB, smCB = maxsigma(1000., RV('weibull_min', shape=m_tau, scale=0.1, loc=0.0), m_xi) wmMC, smMC = maxsigma(1., RV('weibull_min', shape=m_tau, scale=0.1, loc=0.0), m_xi) # w_CB = np.linspace(0.0,100./m**2,200) # w_MC = np.linspace(0.0,1.5/m**2,200) # plt.plot(wmCB, smCB, 'ro') # plt.plot(wmMC, smMC, 'bo') # sigma_c_CB = sigmac(w_CB, 1000., RV('weibull_min', shape=3.0, scale=0.1, loc=0.0), m) # sigma_c_MC = sigmac(w_MC, 1.0, RV('weibull_min', shape=3.0, scale=0.1, loc=0.0), m) # plt.plot(w_CB, sigma_c_CB, label='CB') # plt.plot(w_MC, sigma_c_MC, label='MC') # plt.show() strength_CB.append(smCB) strength_MC.append(smMC) CB_arr = np.ones_like(np.array([strength_CB])) MC_arr = np.array([strength_MC]) / np.array([strength_CB]) res_arr.append(MC_arr.flatten()) plt.plot(m_xi_arr, CB_arr.flatten(), lw=2., color='black') plt.plot(m_xi_arr, MC_arr.flatten(), label=str(m_tau) + ' MC') res_arr = np.array(res_arr) file_res = open('res_m.pkl', 'wb') pickle.dump(res_arr, file_res, -1) file_res.close() plt.legend(loc='best') plt.ylim(0) plt.show()
def plot(): sigma = isp.adaption.load_sigma_c Ll = 50. Lr = 50. x = np.linspace(-Ll, Lr, 201) eps_vars = orthogonalize([np.arange(len(sigma)), np.arange(len(x))]) # mu_q_nisp = nisp(P, x, Ll, Lr)[0] mu_q_isp = isp(sigma, x, 1., 14.) mu_q_isp2 = isp(sigma, x, Ll, Lr) # plt.plot(np.arange(len(sigma)), sigma/0.0103) # plt.plot(np.arange(len(sigma)), np.max(mu_q_isp,axis = 0)) # plt.show() # n_mu_q_arr = mu_q_nisp / np.max(np.fabs(mu_q_nisp)) mlab.surf(eps_vars[0], eps_vars[1], mu_q_isp / 10.) mlab.surf(eps_vars[0], eps_vars[1], mu_q_isp2 / 10.) mlab.show()
def det_tau_r( E_f, V_f, m_list, dp_tau, dp_r, tau_range, r_range, sV0 ): m = m_list[0] s0 = ( ( mu_tau * ( m + 1 ) * sV0 ** m ) / ( E_f * pi * mu_r ** 3 ) ) ** ( 1. / ( m + 1 ) ) mu_xi = s0 * gamma( 1. + 1. / ( 1. + m ) ) ################ w_arr = np.linspace( 0, 100, 300 ) tau_arr = np.linspace( tau_range[0], tau_range[1], dp_tau ) r_arr = np.linspace( r_range[0], r_range[1], dp_tau ) e_arr = orthogonalize( [tau_arr, r_arr] ) x_axis = e_arr[0] y_axis = e_arr[1] for i_m, mi in enumerate( m_list ): res_array = np.zeros( ( dp_tau, dp_r ) ) for i_tau, taui in enumerate( tau_arr ): for i_r, ri in enumerate( r_arr ): s0i = mu_xi / gamma( 1. + 1. / ( 1. + mi ) ) sV0i = ( ( s0i ** ( mi + 1 ) * E_f * pi * ri ** 3. ) / ( taui * ( mi + 1. ) ) ) ** ( 1. / mi ) T = 2. * taui / ri s0 = ( ( T * ( mi + 1 ) * sV0i ** mi ) / ( 2. * E_f * pi * ri ** 2 ) ) ** ( 1. / ( mi + 1 ) ) k = np.sqrt( T / E_f ) ef0 = k * np.sqrt( w_arr ) G = 1 - np.exp( -( ef0 / s0 ) ** ( mi + 1 ) ) mu_int = ef0 * E_f * V_f * ( 1 - G ) I = s0 * gamma( 1 + 1. / ( mi + 1 ) ) * gammainc( 1 + 1. / ( mi + 1 ), ( ef0 / s0 ) ** ( mi + 1 ) ) mu_broken = E_f * V_f * I / ( mi + 1 ) result = mu_int + mu_broken sigma_c = np.max( result ) if sigma_c == result[-1]: print "w_arr too short" pass res_array[i_tau, i_r] = sigma_c mlab.surf( x_axis, y_axis, res_array / 100. ) mlab.xlabel( "det tau" ) mlab.ylabel( "det r" ) mlab.zlabel( "sigma" ) mlab.show()
x = np.linspace(0, 20, 20000) #print x[35] x -= x[70] #print x #crack_x = x - #x = np.linspace( -10 , 10 , 100 ) # eps = sb.get_eps_x_reinf( x ) # # plt.plot( x, eps, lw = 2, color = 'black' ) # plt.show() import enthought.mayavi.mlab as m from stats.spirrid import orthogonalize resolution = 200 profiles_list = [] forces_arr = np.linspace(0, 6200, resolution) for i, p in enumerate(forces_arr): sb.P = p profiles_list.append(sb.get_eps_x_reinf(x)) profiles_arr = np.array(profiles_list) param_arr = orthogonalize([x, forces_arr]) norm_param_arr = [ e / np.max(np.fabs(e)) for e in param_arr ] norm_profiles_arr = profiles_arr / np.max(np.fabs(profiles_arr)) m.surf(norm_param_arr[0], norm_param_arr[1], norm_profiles_arr) m.show()
from stats.spirrid import make_ogrid as orthogonalize import numpy as np from etsproxy.mayavi import mlab import mayavi #x,y data generation CoV_tau_range = [1e-7, 0.5] CoV_r_range = [1e-7, 0.5] dp_tau = 20 dp_r = 20 CoV_tau_arr = np.linspace(CoV_tau_range[0], CoV_tau_range[1], dp_tau) #CoV_tau_arr = CoV_tau_arr[::-1] CoV_r_arr = np.linspace(CoV_r_range[0], CoV_r_range[1], dp_r) e_arr = orthogonalize([CoV_tau_arr, CoV_r_arr]) x_axis1 = e_arr[0] y_axis1 = e_arr[1] list(CoV_tau_arr) #x,y,z plot # ------------------------------------------- def sigma_m(m): dataname = "sigmaOPT20_with_m{}.npy".format(m) res = np.load(dataname) from mayavi.api import Engine engine = Engine() engine.start() if len(engine.scenes) == 0: engine.new_scene() mlab.surf(x_axis1, y_axis1, res, representation='wireframe')
def rand_tau_r(E_f, V_f, mu_tau, mu_r, mu_xi, m_list, CoV_tau_range, CoV_r_range, dp_tau, dp_r, sV0): #rand tau and rand r for mi in m_list: s = get_scale(mu_xi, mi, mu_tau, mu_r) sV0 = float(s * (pi * mu_r ** 2) ** (1. / mi)) Pf = RV('uniform', loc=0.0, scale=1.0) w_arr = np.linspace(0, 1.2, 30) cb = CBResidual(include_pullout=True) # loc scale generation for specific CoV #CoVtau CoV_tau_arr = np.linspace(CoV_tau_range[0], CoV_tau_range[1], dp_tau) loc_tau_arr = mu_tau - CoV_tau_arr * mu_tau * 3 ** 0.5 scale_tau_arr = 2 * mu_tau - 2 * loc_tau_arr #CoVr CoV_r_arr = np.linspace(CoV_r_range[0], CoV_r_range[1], dp_r) loc_r_arr = mu_r - CoV_r_arr * mu_r * 3 ** 0.5 scale_r_arr = 2 * mu_r - 2 * loc_r_arr #shaping for mayavi e_arr = orthogonalize([CoV_tau_arr, CoV_r_arr]) x_axis = e_arr[0] y_axis = e_arr[1] #TAU gen Tuple of [loc,scale] stats_tau = [] for s in range(dp_tau): stats_tau.append(RV('uniform', loc=loc_tau_arr[s], scale=scale_tau_arr[s])) stats_r = [] for s in range(dp_r): stats_r.append(RV('uniform', loc=loc_r_arr[s], scale=scale_r_arr[s])) #r gen Tuple of [loc,scale] res_array = np.zeros((dp_tau, dp_r)) for i_tau, taui in enumerate(stats_tau): for i_r, ri in enumerate(stats_r): total = SPIRRID(q=cb, sampling_type='MCS', evars=dict(w=w_arr), tvars=dict(tau=taui, E_f=E_f, V_f=V_f, r=ri, m=mi, sV0=sV0, Pf=Pf), n_int=70) if isinstance(ri, RV): r_arr = np.linspace(ri.ppf(0.001), ri.ppf(0.999), 200) Er = np.trapz(r_arr ** 2 * ri.pdf(r_arr), r_arr) else: Er = ri ** 2 result = total.mu_q_arr / Er sigma_c = np.max(result) if sigma_c == result[-1]: print "w_arr too short" res_array[i_tau, i_r] = sigma_c #mayaviplot mlab.surf(x_axis, y_axis, res_array) #mlab.xlabel("rand tau") #mlab.ylabel("rand r") #mlab.zlabel("sigma") mlab.show()
from stats.spirrid import make_ogrid as orthogonalize import numpy as np from etsproxy.mayavi import mlab import mayavi #x,y data generation CoV_tau_range = [1e-7, 0.5] CoV_r_range = [1e-7, 0.5] dp_tau = 20 dp_r = 20 CoV_tau_arr = np.linspace( CoV_tau_range[0], CoV_tau_range[1], dp_tau ) #CoV_tau_arr = CoV_tau_arr[::-1] CoV_r_arr = np.linspace( CoV_r_range[0], CoV_r_range[1], dp_r ) e_arr = orthogonalize( [CoV_tau_arr, CoV_r_arr] ) x_axis1 = e_arr[0] y_axis1 = e_arr[1] list( CoV_tau_arr ) #x,y,z plot # ------------------------------------------- def sigma_m( m ): dataname = "sigmaOPT20_with_m{}.npy".format( m ) res = np.load( dataname ) from mayavi.api import Engine engine = Engine() engine.start() if len( engine.scenes ) == 0: engine.new_scene() mlab.surf( x_axis1 , y_axis1 , res , representation = 'wireframe' ) surface = engine.scenes[0].children[0].children[0].children[0].children[0].children[0]
l=RV("uniform", 5.0, 10.0), D_f=26e-3, E_f=72e3, theta=0.0, xi=RV("weibull_min", scale=0.017, shape=8, n_int=10), phi=1.0, Ll=50.0, # Lr = 1.0 ), n_int=3, ) from stats.spirrid import orthogonalize from time import sleep e_arr = orthogonalize(s.evar_list) n_e_arr = [e / np.max(np.fabs(e)) for e in e_arr] max_mu_q = np.max(np.fabs(s.mu_q_arr)) n_mu_q_arr = s.mu_q_arr / max_mu_q n_std_q_arr = np.sqrt(s.var_q_arr) / max_mu_q import enthought.mayavi.mlab as m f = m.figure(1, size=(1000, 500), fgcolor=(0, 0, 0), bgcolor=(1.0, 1.0, 1.0)) s = m.surf(n_e_arr[1], n_e_arr[2], n_mu_q_arr[0, :, :]) m.axes( s, color=(0.7, 0.7, 0.7),
), n_int = 20) ctt = CTT(length = length, nx = nx, matrix_strength = matrix_strength, cb_randomization = rand, cb_type = 'mean', ) P = np.linspace(0.1, 400, 200) matrix = [] reinf = [] for p in P: ctt.applied_force = p matrix.append(ctt.eps_r_x) reinf.append(ctt.eps_m_x) e_arr = orthogonalize([ctt.x_arr, P]) n_e_arr = [ e / np.max(np.fabs(e)) for e in e_arr ] mu_m_arr = np.array(matrix) mu_r_arr = np.array(reinf) n_mu_m_arr = mu_m_arr / np.max(np.fabs(mu_m_arr)) n_mu_r_arr = mu_r_arr / np.max(np.fabs(mu_r_arr)) #m.surf(n_e_arr[0], n_e_arr[1], n_mu_m_arr) m.surf(n_e_arr[0], n_e_arr[1], n_mu_r_arr) plt.plot(ctt.eps, P) plt.show() m.show()
## plt.show() # e_arr = orthogonalize([x, P]) # n_e_arr = [ e / np.max(np.fabs(e)) for e in e_arr ] # # mu_q_arr = np.array(forces) # # n_mu_q_arr = mu_q_arr / np.max(np.fabs(mu_q_arr)) # m.surf(n_e_arr[0], n_e_arr[1], n_mu_q_arr) mfy = MultifilamentYarn() mfy.Ll = 10. mfy.Lr = 20. x = np.linspace(-30, 30, 300) P = np.linspace(0., 580, 200) forces = [] for p in P: mfy.P = p forces.append(mfy.get_force_x_reinf(x)) # plt.plot( x, mfy.get_force_x_reinf( x ) ) # plt.show() e_arr = orthogonalize([x, P]) n_e_arr = [ e / np.max(np.fabs(e)) for e in e_arr ] mu_q_arr = np.array(forces) n_mu_q_arr = mu_q_arr / np.max(np.fabs(mu_q_arr)) m.surf(n_e_arr[0], n_e_arr[1], n_mu_q_arr) m.show()
def rand_tau_r( E_f, V_f, mu_tau, mu_r, m_list, CoV_tau_range, CoV_r_range, dp_tau, dp_r, sV0 ): #rand tau and rand r m = m_list[0] s0 = ( ( mu_tau * ( m + 1 ) * sV0 ** m ) / ( E_f * pi * mu_r ** 3 ) ) ** ( 1. / ( m + 1 ) ) mu_xi = s0 * gamma( 1. + 1. / ( 1. + m ) ) for i_m, mi in enumerate( m_list ): s0i = mu_xi / gamma( 1. + 1. / ( 1. + mi ) ) sV0i = ( ( s0i ** ( mi + 1 ) * E_f * pi * mu_r ** 3. ) / ( mu_tau * ( mi + 1. ) ) ) ** ( 1. / mi ) # #print 'Nr', i_m, 's0i', s0i, 'sV0i', sV0i, 'mu_xi', s0i * gamma(1. + 1. / (1. + mi)) # #Pf = RV( 'uniform', loc = 0.0, scale = 1.0 ) #w_arr = np.linspace(0, 1.2, 30) # loc scale generation for specific CoV #CoVtau CoV_tau_arr = np.linspace( CoV_tau_range[0], CoV_tau_range[1], dp_tau ) loc_tau_arr = mu_tau - CoV_tau_arr * mu_tau * 3 ** 0.5 scale_tau_arr = 2 * mu_tau - 2 * loc_tau_arr #CoVr CoV_r_arr = np.linspace( CoV_r_range[0], CoV_r_range[1], dp_r ) loc_r_arr = mu_r - CoV_r_arr * mu_r * 3 ** 0.5 scale_r_arr = 2 * mu_r - 2 * loc_r_arr #shaping for mayavi e_arr = orthogonalize( [CoV_tau_arr, CoV_r_arr] ) x_axis = e_arr[0] y_axis = e_arr[1] #TAU gen Tuple of [loc,scale] stats_tau = [] for s in range( dp_tau ): stats_tau.append( RV( 'uniform', loc = loc_tau_arr[s], scale = scale_tau_arr[s] ) ) stats_tau[0] = mu_tau stats_r = [] for s in range( dp_r ): stats_r.append( RV( 'uniform', loc = loc_r_arr[s], scale = scale_r_arr[s] ) ) stats_r[0] = mu_r #r gen Tuple of [loc,scale] sigma_array = np.zeros( ( dp_tau, dp_r ) ) w_array = np.zeros( ( dp_tau, dp_r ) ) ##grid sigma_array_grid = np.zeros( ( dp_tau, dp_r ) ) w_array_grid = np.zeros( ( dp_tau, dp_r ) ) for i_tau, taui in enumerate( stats_tau ): for i_r, ri in enumerate( stats_r ): total = SPIRRID( q = cb, sampling_type = 'PGrid', evars = dict(), tvars = dict( tau = taui, E_f = E_f, V_f = V_f, r = ri, m = mi, sV0 = sV0i ), n_int = 70 ) if isinstance( ri, RV ): r_arr = np.linspace( ri.ppf( 0.001 ), ri.ppf( 0.999 ), 200 ) Er = np.trapz( r_arr ** 2 * ri.pdf( r_arr ), r_arr ) else: Er = ri ** 2 #Optimization taui, E_f, V_f, ri, mi, sV0i, Pf, Er def spirrid_func( w_in, Er ): w_arr = np.array( w_in ) #print 'w', w_arr total.evars = dict( w = w_arr ) g = -1.*total.mu_q_arr / Er #print 'res', g total.evars = dict( w = w_arr ) return g #w_test = np.linspace(0.001, 1, 1000) #total.evars = dict(w=w_test) # plt.plot(w_test, -1.*total.mu_q_arr / Er) #plt.show() print i_tau, 'von', dp_tau #Optimierung w_ult, sigma_ult, trash1, trash2, trash3 = fmin( spirrid_func, x0 = 0.1, args = [Er], ftol = 0.2, full_output = 1 ) sigma_array[i_tau, i_r] = np.float( -1.*sigma_ult ) w_array[i_tau, i_r] = np.float( w_ult ) #grid w_grid = np.linspace( 0.2, 0.28, 50 ) res_grid = -1.* spirrid_func( w_grid, Er ) index_max_grid = np.argmax( res_grid ) sigma_array_grid[i_tau, i_r] = res_grid[index_max_grid] w_array_grid[i_tau, i_r] = w_grid[index_max_grid] #print w_grid[index_max_grid] #print np.max( sigma_array ) s_dataname = 'sigmaOPT20_with_m{}.npy'.format( mi ) np.save( s_dataname, sigma_array ) w_dataname = 'wOPT20_with_m{}.npy'.format( mi ) np.save( w_dataname, w_array ) #Grid Datasave s_gridname = 'sigmaGRID20_with_m{}.npy'.format( mi ) np.save( s_gridname , sigma_array_grid ) w_gridname = 'wGRID20_with_m{}.npy'.format( mi ) np.save( w_gridname, w_array_grid ) #mayaviplot mlab.surf( x_axis, y_axis, w_array ) mlab.xlabel( "rand tau" ) mlab.ylabel( "rand r" ) mlab.zlabel( "sigma" ) mlab.show()