Example #1
0
def findLSRline(dp):
    if !checkDPFormat(dp):
        print "ERROR: invalid dotplot format in findLSRline"
        return "invalid dotplot format"
    r = CorrCoef(dp)
    x = [i[0] for i in dp]
    sx = stats.stdDev(x)
    y = [i[1] for i in dp]
    sy = stats.stdDev(y)
    b = (r * sy) / sx
    a = stats.mean(y) - b * stats.mean(x)
Example #2
0
def Std_EnergyOverTime(bouncecumulative):
    #calc StdDev for energy development over time
    for n in range(0, g.nbnc + 1):
        paraAvg[1, n] = stats.stdDev(Bounce[9, n, :], paraAvg[0, n],
                                     (g.NUM_OF_JOBS * g.NUM_OF_TRAJ) -
                                     bouncecumulative[n])
        normAvg[1, n] = stats.stdDev(Bounce[10, n, :], normAvg[0, n],
                                     (g.NUM_OF_JOBS * g.NUM_OF_TRAJ) -
                                     bouncecumulative[n])
        kinAvg[1, n] = stats.stdDev(
            Bounce[10, n, :] + Bounce[9, n, :], kinAvg[0, n],
            (g.NUM_OF_JOBS * g.NUM_OF_TRAJ) - bouncecumulative[n])
def calculateDividingLine(gestures, maybeGestures, nonGestures):
	numFolds = min(TESTING_FOLDS, len(gestures))
	
	allGestureDistances = []
	allNonGestureDistances = []
	
	for foldNum in range(numFolds):	
		trainingGestures = [gesture for i, gesture in enumerate(gestures) if i % numFolds != foldNum]
		testingGestures = [localTimeGestures for i, localTimeGestures in enumerate(maybeGestures) if i % numFolds == foldNum]
		
		#print 'train, test #s: ', len(trainingGestures), len(testingGestures)
		
		#make a distance calculator based on the subset of hte training data
		distanceCalculator = gestureDistanceCalculator.GestureDistanceCalculator(trainingGestures)
		
		#each localTimeGestures is a list of the closest times to when a gesture was identified in training
		#since the output can be triggered at slightly different times, we should look for a minimum near where
		#the gesture is known to have happened, compared to the training gestures
		gestureDistances = []
		#print testingGestures
		for localTimeGestureSet in testingGestures:
			
			closestDistance = min(map(distanceCalculator.getDistance, localTimeGestureSet))
			gestureDistances.append(closestDistance)
		
		#gestureDistances = map(distanceCalculator.getDistance, testingGestures)
		#print gestureDistances
		nonGestureDistances = map(distanceCalculator.getDistance, nonGestures)
		#print gestureDistances
		
		allGestureDistances += gestureDistances
		allNonGestureDistances += nonGestureDistances
		#break
		
	#print len(allGestureDistances), len(allNonGestureDistances)
	print 'means: ', stats.mean(allGestureDistances), stats.mean(allNonGestureDistances)
	
	print 'std devs: ', stats.stdDev(allGestureDistances), stats.stdDev(allNonGestureDistances)
	
	meanGesture = stats.mean(allGestureDistances)
	meanNon = stats.mean(allNonGestureDistances)
	
	devGesture = stats.stdDev(allGestureDistances)
	devNon = stats.stdDev(allNonGestureDistances)
	
	line = (meanGesture * devNon + meanNon * devGesture) / ( devGesture + devNon)
	
	#print line
	return line
def scaleTestMinFinding():
	xs = range(10)
	distances = []
	noise = 3.5
	n = 1000000
	for i in range(n):
		a = random()
		b = random()
		c = random()
		ys = [x*x*a + x*b + c + random() * noise for x in xs]
		
		#print a, b, c, polynomialFit(xs, ys)[::-1]
		minExp, unc = polynomialFindMinimum(xs, ys, returnErrors = True)
		minCalc = -b/(2.0*a)
		dist = (minCalc - minExp) / unc
		#print minCalc, minExp, unc, dist
		distances.append(dist)
		
	print 'mean: %f' % stats.mean(distances)
	print 'stdDev: %f' % stats.stdDev(distances)
	for sigma in [1, 2, 3]:
		print 'With %d sigma: %f%%' % (sigma, 100.0 * sum([int(abs(d) < sigma) for d in distances]) / n)
	
	pylab.hist(distances, bins = 50, range = (-5, 5))
	pylab.show()
Example #5
0
def CorrCoef(data):#format: [[x,y],[x,y]..] where [x,y] represents 1 individual
    if !checkDPFormat(data):
        print "ERROR: invalid dotplot format in CorrCoef"
        return 2
    x = [i[0] for i in data]
    y = [i[1] for i in data]
    xb = stats.mean(x)
    yb = stats.mean(y)
    if xb == "N/A" or yb == "N/A":
        print "ERROR: failed to calculate mean in CorrCoef"
        return 3
    sx = stats.stdDev(x)
    sy = stats.stdDev(y)
    if sx == -1 or sy == -1:
        print "ERROR: failed to calculate stdDev in CorrCoef"
        return 4
    s = 0
    for i in data:
        s += ((i[0] - xb) / sx) * ((i[1] - yb) / sy)
    return s / (len(data) - 1)
Example #6
0
 def testSingleStdDev(self):
     # passing only one data point to stdDev() must return zero (no deviation!)
     self.assertEqual(stats.stdDev([5]), 0.0)
		distance, closest, systemOutput = gr.getOutput(input)
		s = '\t'.join([str(i), str([round(i[0], 2) for i in gestureDistanceCalculator.normalizeData(input)]), str(round(distance, 2))])
		
		if distance < DISTANCE_TO_PRINT:
			print s
		
		fout.write(s + '\n')
		
		allDistances.append(distance)
		
	#elapsed = time.time() - start
	#numPoints = len(data) - l1 - l2
	#print 'took %s for %s points' % (elapsed, numPoints)
		
	avDistance = stats.mean(allDistances)
	stdDevDistance = stats.stdDev(allDistances)
	
	print 'average distance: %s with stdDev %s' % (avDistance, stdDevDistance)
	
	fout.close()

def testGestureRecognizer():
	data = loadData(filename = '../data2.txt')
	gesturesDict, maybeGesturesDict = realtimeGR1.extractGesturesAndMaybe1(data)
	gestures = gesturesDict[0]
	maybeGestures = maybeGesturesDict[0]
	#print maybeGestures
	nonGestures = realtimeGR1.extractNonGestures(data)
	
	
	
def GetConvergence(data, plot = True, initialOffset = 0.0):
	baseInterval = rawSps / (samplesPerSecond + initialOffset)
	
	channelIntervals = [baseInterval + rangePercentage * i * 0.02 for i in range(-channels/2+1, channels/2+1)]
	sampleFrequencies = map(lambda x: rawSps / x, channelIntervals)
	channelLeakages = [[] for _ in range(channels)]
	
	intervalCounters = [0.0] * channels
	
	buffers = [[] for _ in range(channels)]
	
	lastSample = 0.0
	startIndex = int(math.ceil(windowSize * max(channelIntervals)))
	for index, sample in enumerate(data):
		#add the sample to channels if necessary
		for c in range(channels):
			intervalCounters[c] += 1.0
			if intervalCounters[c] > channelIntervals[c]:
				intervalCounters[c] %= channelIntervals[c]
				weight0 = min(1.0, intervalCounters[c])
				weight1 = max(0.0, 1.0 - intervalCounters[c])
				interpolated = weight0 * sample + weight1 * lastSample
				buffers[c].append(interpolated)
				
		if index > startIndex and index % overlap == 0:
			for c in range(channels):
				leakage = getToneLeakage(buffers[c][-windowSize:])
				channelLeakages[c].append(leakage)
				
			if len(channelLeakages[0]) >= measurementCount:
				print 'total data collection time: %d ms' % (1000 * index / rawSps)
				break
		
		lastSample = sample
		
	means = []
	stdDevs = []
	
	for c in range(channels):
		means.append(stats.mean(channelLeakages[c]))
		stdDevs.append(stats.stdDev(channelLeakages[c]))
	errors = stdDevs
	
	for ys in zip(*channelLeakages):
		pylab.plot(sampleFrequencies, ys, 'bo')
		
	pylab.errorbar(sampleFrequencies, means, yerr=stdDevs, fmt='co')
	#print '\n'.join([str(x) for x in zip(sampleFrequencies, means, stdDevs)])
	
	#get the fit
	nextInterval, error = polyFitTest.polynomialFindMinimum(channelIntervals, means, errors = errors, order = 3, returnErrors = True)
	print nextInterval, error
	
	sps = rawSps / nextInterval
	sigma_sps = rawSps /(nextInterval**2.0) * error
	
	print 'Calculated samples per second: %f +/- %f' % (sps, sigma_sps)
	
	z = numpy.poly1d(polyFitTest.polynomialFit(sampleFrequencies, means, errors = errors, order = 3)[::-1])
	xp = numpy.linspace(min(sampleFrequencies)-2, max(sampleFrequencies)+2, 100)
	yp = z(xp)
	
	pylab.plot(xp, yp, 'g')
	#mins = [sps, sps-sigma_sps, sps+sigma_sps]
	pylab.errorbar(sps, z(sps), xerr=[sigma_sps], fmt='ro')
	
	
	pylab.grid(True)
	pylab.show()
 def testDefaultPrecisionStdDev(self):
     X = [1, 2, -2, 4, -3]
     self.assertEqual(stats.stdDev(X), 2.577)
Example #10
0
 def testSingleStdDev(self):
         # passing only one data point to stdDev() must return zero (no deviation!)
     self.assertEqual(stats.stdDev([5]), 0.0)
import stats
from matplotlib import pylab

f = open("ukPowerFrequencies.txt")
frequencies = [float(line.split("\t")[-1]) for line in f]

print "# Points: %s" % len(frequencies)
print "mean: %s" % stats.mean(frequencies)
print "stdDev: %s" % stats.stdDev(frequencies)
print "range: (%s - %s)" % (min(frequencies), max(frequencies))

pylab.hist(frequencies, 50)
pylab.show()
Example #12
0
import sys

sys.path.append(sys.path[0] + "/tools/")

import stats
import parsers

data = parsers.parseCSV(sys.path[0] + "/dataSets/sdintuition.csv")

info = data.pop(0)

for i in range(0, len(info)):
    print info[i] + ": " + str(stats.stdDev([j[i] for j in data]))
def GetExpectedError(algorithmClass, n = 1000):
	import multiprocessing
	
	pool = multiprocessing.Pool(7)
	
	partialConverge = functools.partial(ConvergeFunc, algorithmClass)
	
	offsets = [10*(random() - 0.5) for _ in xrange(n)]
	leakages = []
	for i, leakage in enumerate(pool.imap(partialConverge, offsets), 1):
		sys.stderr.write('\rdone {0:%}'.format(float(i)/n))
		leakages.append(leakage)
	
	#print leakages
	print '\r%s: Average error: %f \t+/-: %f' % (algorithmClass.__name__, stats.mean(leakages), stats.stdDev(leakages))
Example #14
0
 def testDefaultPrecisionStdDev(self):
     X = [1, 2, -2, 4, -3]
     self.assertEqual(stats.stdDev(X), 2.577)
Example #15
0
 def testOtherPrecisionStdDev(self):
     X = [1, 2, -2, 4, -3]
     self.assertEqual(stats.stdDev(X,4), 2.5768)
Example #16
0
 def testOtherPrecisionStdDev(self):
     X = [1, 2, -2, 4, -3]
     self.assertEqual(stats.stdDev(X, 4), 2.5768)
Example #17
0
def main ():
    data = stats.getNumbers()
    xbar = stats.mean(data)
    std = stats.stdDev(data)
    xbar2, std2 = stats.meanStdDev(data)
    print (xbar, std, xbar2, std2)