def test__reduce_dict(): data = OrderedDict(zip(list(product('mf', 'oy', 'wn')), [1] * 8)) eq(_reduce_dict(data, ('m', )), 4) eq(_reduce_dict(data, ('m', 'o')), 2) eq(_reduce_dict(data, ('m', 'o', 'w')), 1) data = OrderedDict(zip(list(product('mf', 'oy', 'wn')), lrange(8))) eq(_reduce_dict(data, ('m', )), 6) eq(_reduce_dict(data, ('m', 'o')), 1) eq(_reduce_dict(data, ('m', 'o', 'w')), 0)
def test_mosaic_very_complex(): # make a scattermatrix of mosaic plots to show the correlations between # each pair of variable in a dataset. Could be easily converted into a # new function that does this automatically based on the type of data key_name = ['gender', 'age', 'health', 'work'] key_base = (['male', 'female'], ['old', 'young'], ['healty', 'ill'], ['work', 'unemployed']) keys = list(product(*key_base)) data = OrderedDict(zip(keys, range(1, 1 + len(keys)))) props = {} props[('male', 'old')] = {'color': 'r'} props[('female', )] = {'color': 'pink'} L = len(key_base) fig, axes = pylab.subplots(L, L) for i in range(L): for j in range(L): m = set(range(L)).difference(set((i, j))) if i == j: axes[i, i].text(0.5, 0.5, key_name[i], ha='center', va='center') axes[i, i].set_xticks([]) axes[i, i].set_xticklabels([]) axes[i, i].set_yticks([]) axes[i, i].set_yticklabels([]) else: ji = max(i, j) ij = min(i, j) temp_data = OrderedDict([((k[ij], k[ji]) + tuple(k[r] for r in m), v) for k, v in iteritems(data)]) keys = list(iterkeys(temp_data)) for k in keys: value = _reduce_dict(temp_data, k[:2]) temp_data[k[:2]] = value del temp_data[k] mosaic(temp_data, ax=axes[i, j], axes_label=False, properties=props, gap=0.05, horizontal=i > j) pylab.suptitle('old males should look bright red, (plot 4 of 4)') #pylab.show() pylab.close('all')
def test_mosaic_simple(): # display a simple plot of 4 categories of data, splitted in four # levels with increasing size for each group # creation of the levels key_set = (['male', 'female'], ['old', 'adult', 'young'], ['worker', 'unemployed'], ['healty', 'ill']) # the cartesian product of all the categories is # the complete set of categories keys = list(product(*key_set)) data = OrderedDict(zip(keys, range(1, 1 + len(keys)))) # which colours should I use for the various categories? # put it into a dict props = {} #males and females in blue and red props[('male', )] = {'color': 'b'} props[('female', )] = {'color': 'r'} # all the groups corresponding to ill groups have a different color for key in keys: if 'ill' in key: if 'male' in key: props[key] = {'color': 'BlueViolet', 'hatch': '+'} else: props[key] = {'color': 'Crimson', 'hatch': '+'} # mosaic of the data, with given gaps and colors mosaic(data, gap=0.05, properties=props, axes_label=False) pylab.suptitle('syntetic data, 4 categories (plot 2 of 4)') #pylab.show() pylab.close('all')
def _normalize_data(data, index): """normalize the data to a dict with tuples of strings as keys right now it works with: 0 - dictionary (or equivalent mappable) 1 - pandas.Series with simple or hierarchical indexes 2 - numpy.ndarrays 3 - everything that can be converted to a numpy array 4 - pandas.DataFrame (via the _normalize_dataframe function) """ # if data is a dataframe we need to take a completely new road # before coming back here. Use the hasattr to avoid importing # pandas explicitly if hasattr(data, 'pivot') and hasattr(data, 'groupby'): data = _normalize_dataframe(data, index) index = None # can it be used as a dictionary? try: items = list(iteritems(data)) except AttributeError: # ok, I cannot use the data as a dictionary # Try to convert it to a numpy array, or die trying data = np.asarray(data) temp = OrderedDict() for idx in np.ndindex(data.shape): name = tuple(i for i in idx) temp[name] = data[idx] data = temp items = list(iteritems(data)) # make all the keys a tuple, even if simple numbers data = OrderedDict([_tuplify(k), v] for k, v in items) categories_levels = _categories_level(list(iterkeys(data))) # fill the void in the counting dictionary indexes = product(*categories_levels) contingency = OrderedDict([(k, data.get(k, 0)) for k in indexes]) data = contingency # reorder the keys order according to the one specified by the user # or if the index is None convert it into a simple list # right now it doesn't do any check, but can be modified in the future index = lrange(len(categories_levels)) if index is None else index contingency = OrderedDict() for key, value in iteritems(data): new_key = tuple(key[i] for i in index) contingency[new_key] = value data = contingency return data
def test_recursive_split(): keys = list(product('mf')) data = OrderedDict(zip(keys, [1] * len(keys))) res = _hierarchical_split(data, gap=0) assert_(list(iterkeys(res)) == keys) res[('m', )] = (0.0, 0.0, 0.5, 1.0) res[('f', )] = (0.5, 0.0, 0.5, 1.0) keys = list(product('mf', 'yao')) data = OrderedDict(zip(keys, [1] * len(keys))) res = _hierarchical_split(data, gap=0) assert_(list(iterkeys(res)) == keys) res[('m', 'y')] = (0.0, 0.0, 0.5, 1 / 3) res[('m', 'a')] = (0.0, 1 / 3, 0.5, 1 / 3) res[('m', 'o')] = (0.0, 2 / 3, 0.5, 1 / 3) res[('f', 'y')] = (0.5, 0.0, 0.5, 1 / 3) res[('f', 'a')] = (0.5, 1 / 3, 0.5, 1 / 3) res[('f', 'o')] = (0.5, 2 / 3, 0.5, 1 / 3)
def summary_model(results): '''Create a dict with information about the model ''' def time_now(*args, **kwds): now = datetime.datetime.now() return now.strftime('%Y-%m-%d %H:%M') info = OrderedDict() info['Model:'] = lambda x: x.model.__class__.__name__ info['Model Family:'] = lambda x: x.family.__class.__name__ info['Link Function:'] = lambda x: x.family.link.__class__.__name__ info['Dependent Variable:'] = lambda x: x.model.endog_names info['Date:'] = time_now info['No. Observations:'] = lambda x: "%#6d" % x.nobs info['Df Model:'] = lambda x: "%#6d" % x.df_model info['Df Residuals:'] = lambda x: "%#6d" % x.df_resid info['Converged:'] = lambda x: x.mle_retvals['converged'] info['No. Iterations:'] = lambda x: x.mle_retvals['iterations'] info['Method:'] = lambda x: x.method info['Norm:'] = lambda x: x.fit_options['norm'] info['Scale Est.:'] = lambda x: x.fit_options['scale_est'] info['Cov. Type:'] = lambda x: x.fit_options['cov'] info['R-squared:'] = lambda x: "%#8.3f" % x.rsquared info['Adj. R-squared:'] = lambda x: "%#8.3f" % x.rsquared_adj info['Pseudo R-squared:'] = lambda x: "%#8.3f" % x.prsquared info['AIC:'] = lambda x: "%8.4f" % x.aic info['BIC:'] = lambda x: "%8.4f" % x.bic info['Log-Likelihood:'] = lambda x: "%#8.5g" % x.llf info['LL-Null:'] = lambda x: "%#8.5g" % x.llnull info['LLR p-value:'] = lambda x: "%#8.5g" % x.llr_pvalue info['Deviance:'] = lambda x: "%#8.5g" % x.deviance info['Pearson chi2:'] = lambda x: "%#6.3g" % x.pearson_chi2 info['F-statistic:'] = lambda x: "%#8.4g" % x.fvalue info['Prob (F-statistic):'] = lambda x: "%#6.3g" % x.f_pvalue info['Scale:'] = lambda x: "%#8.5g" % x.scale out = OrderedDict() for key, func in iteritems(info): try: out[key] = func(results) # NOTE: some models don't have loglike defined (RLM), so that's NIE except (AttributeError, KeyError, NotImplementedError): pass return out
def _categories_level(keys): """use the Ordered dict to implement a simple ordered set return each level of each category [[key_1_level_1,key_2_level_1],[key_1_level_2,key_2_level_2]] """ res = [] for i in zip(*(keys)): tuplefied = _tuplify(i) res.append(list(OrderedDict([(j, None) for j in tuplefied]))) return res
def summary_frame(self, what='all', alpha=0.05): # TODO: finish and cleanup import pandas as pd from statsmodels.compat.collections import OrderedDict #ci_obs = self.conf_int(alpha=alpha, obs=True) # need to split ci_mean = self.conf_int(alpha=alpha) to_include = OrderedDict() to_include['mean'] = self.predicted_mean to_include['mean_se'] = self.se_mean to_include['mean_ci_lower'] = ci_mean[:, 0] to_include['mean_ci_upper'] = ci_mean[:, 1] self.table = to_include #OrderedDict doesn't work to preserve sequence # pandas dict doesn't handle 2d_array #data = np.column_stack(list(to_include.values())) #names = .... res = pd.DataFrame(to_include, index=self.row_labels, columns=to_include.keys()) return res
def _col_info(result, more_info=None): '''Stack model info in a column ''' model_info = summary_model(result) default_info_ = OrderedDict() default_info_['Model:'] = lambda x: x.get('Model:') default_info_['No. Observations:'] = lambda x: x.get('No. Observations:') default_info_['R-squared:'] = lambda x: x.get('R-squared:') default_info_['Adj. R-squared:'] = lambda x: x.get('Adj. R-squared:') default_info_['Pseudo R-squared:'] = lambda x: x.get('Pseudo R-squared:') default_info_['F-statistic:'] = lambda x: x.get('F-statistic:') default_info_['Covariance Type:'] = lambda x: x.get('Covariance Type:') default_info_['Eeffects:'] = lambda x: x.get('Effects:') default_info_['Covariance Type:'] = lambda x: x.get('Covariance Type:') default_info = default_info_.copy() for k,v in default_info_.items(): if v(model_info): default_info[k] = v(model_info) else: default_info.pop(k) # pop the item whose value is none. if more_info is None: more_info = default_info else: if not isinstance(more_info,list): more_info = [more_info] for i in more_info: try: default_info[i] = getattr(result,i) except (AttributeError, KeyError, NotImplementedError) as e: raise e more_info = default_info try: out = pd.DataFrame(more_info, index=[result.model.endog_names]).T except (AttributeError): out = pd.DataFrame(more_info, index=result.model.dependent.vars).T return out
def test_axes_labeling(): from numpy.random import rand key_set = (['male', 'female'], ['old', 'adult', 'young'], ['worker', 'unemployed'], ['yes', 'no']) # the cartesian product of all the categories is # the complete set of categories keys = list(product(*key_set)) data = OrderedDict(zip(keys, rand(len(keys)))) lab = lambda k: ''.join(s[0] for s in k) fig, (ax1, ax2) = pylab.subplots(1, 2, figsize=(16, 8)) mosaic(data, ax=ax1, labelizer=lab, horizontal=True, label_rotation=45) mosaic(data, ax=ax2, labelizer=lab, horizontal=False, label_rotation=[0, 45, 90, 0]) #fig.tight_layout() fig.suptitle("correct alignment of the axes labels")
def termcolumns(self, query_term, dict=False): """ Return a list of the indices of all columns associated to a given term. """ if self.hasterm(query_term): names = query_term.names() value = OrderedDict() for name in names: value[name] = self._names.index(name) else: raise ValueError('term not in formula') if dict: return value else: return list(itervalues(value))
def _key_splitting(rect_dict, keys, values, key_subset, horizontal, gap): """ Given a dictionary where each entry is a rectangle, a list of key and value (count of elements in each category) it split each rect accordingly, as long as the key start with the tuple key_subset. The other keys are returned without modification. """ result = OrderedDict() L = len(key_subset) for name, (x, y, w, h) in iteritems(rect_dict): if key_subset == name[:L]: # split base on the values given divisions = _split_rect(x, y, w, h, values, horizontal, gap) for key, rect in zip(keys, divisions): result[name + (key,)] = rect else: result[name] = (x, y, w, h) return result
def _ecdf(x): nobs = len(x) return np.arange(1, nobs + 1) / float(nobs) multitest_methods_names = { 'b': 'Bonferroni', 'fdr_bh': 'FDR Benjamini-Hochberg', 'fdr_by': 'FDR Benjamini-Yekutieli' } _alias_list = [['b', 'bonf', 'bonferroni'], ['fdr_bh', 'fdr_i', 'fdr_p', 'fdri', 'fdrp'], ['fdr_by', 'fdr_n', 'fdr_c', 'fdrn', 'fdrcorr']] multitest_alias = OrderedDict() for m in _alias_list: multitest_alias[m[0]] = m[0] for a in m[1:]: multitest_alias[a] = m[0]
def summary(self, title=None, alpha=.05): """ Summarize the #1lab_results of running MICE. Parameters ----------- title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float Significance level for the confidence intervals Returns ------- smry : Summary instance This holds the summary tables and text, which can be printed or converted to various output formats. """ from statsmodels.iolib import summary2 from statsmodels.compat.collections import OrderedDict smry = summary2.Summary() float_format = "%8.3f" info = OrderedDict() info["Method:"] = "MICE" info["Model:"] = self.model_class.__name__ info["Dependent variable:"] = self.endog_names info["Sample size:"] = "%d" % self.model.data.data.shape[0] info["Scale"] = "%.2f" % self.scale info["Num. imputations"] = "%d" % len(self.model.results_list) smry.add_dict(info, align='l', float_format=float_format) param = summary2.summary_params(self, alpha=alpha) param["FMI"] = self.frac_miss_info smry.add_df(param, float_format=float_format) smry.add_title(title=title, results=self) return smry
'ho': 'Hommel', 'fdr_bh': 'FDR Benjamini-Hochberg', 'fdr_by': 'FDR Benjamini-Yekutieli', 'fdr_tsbh': 'FDR 2-stage Benjamini-Hochberg', 'fdr_tsbky': 'FDR 2-stage Benjamini-Krieger-Yekutieli', 'fdr_gbs': 'FDR adaptive Gavrilov-Benjamini-Sarkar' } _alias_list = [['b', 'bonf', 'bonferroni'], ['s', 'sidak'], ['h', 'holm'], ['hs', 'holm-sidak'], ['sh', 'simes-hochberg'], ['ho', 'hommel'], ['fdr_bh', 'fdr_i', 'fdr_p', 'fdri', 'fdrp'], ['fdr_by', 'fdr_n', 'fdr_c', 'fdrn', 'fdrcorr'], ['fdr_tsbh', 'fdr_2sbh'], ['fdr_tsbky', 'fdr_2sbky', 'fdr_twostage'], ['fdr_gbs']] multitest_alias = OrderedDict() for m in _alias_list: multitest_alias[m[0]] = m[0] for a in m[1:]: multitest_alias[a] = m[0] def multipletests(pvals, alpha=0.05, method='hs', is_sorted=False, returnsorted=False): '''test results and p-value correction for multiple tests Parameters
def hdrboxplot(data, ncomp=2, alpha=None, threshold=0.95, bw=None, xdata=None, labels=None, ax=None): """ High Density Region boxplot Parameters ---------- data : sequence of ndarrays or 2-D ndarray The vectors of functions to create a functional boxplot from. If a sequence of 1-D arrays, these should all be the same size. The first axis is the function index, the second axis the one along which the function is defined. So ``data[0, :]`` is the first functional curve. ncomp : int, optional Number of components to use. If None, returns the as many as the smaller of the number of rows or columns in data. alpha : list of floats between 0 and 1, optional Extra quantile values to compute. Default is None threshold : float between 0 and 1, optional Percentile threshold value for outliers detection. High value means a lower sensitivity to outliers. Default is `0.95`. bw: array_like or str, optional If an array, it is a fixed user-specified bandwidth. If `None`, set to `normal_reference`. If a string, should be one of: - normal_reference: normal reference rule of thumb (default) - cv_ml: cross validation maximum likelihood - cv_ls: cross validation least squares xdata : ndarray, optional The independent variable for the data. If not given, it is assumed to be an array of integers 0..N-1 with N the length of the vectors in `data`. labels : sequence of scalar or str, optional The labels or identifiers of the curves in `data`. If not given, outliers are labeled in the plot with array indices. ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. hdr_res : HdrResults instance An `HdrResults` instance with the following attributes: - 'median', array. Median curve. - 'hdr_50', array. 50% quantile band. [sup, inf] curves - 'hdr_90', list of array. 90% quantile band. [sup, inf] curves. - 'extra_quantiles', list of array. Extra quantile band. [sup, inf] curves. - 'outliers', ndarray. Outlier curves. Notes ----- The median curve is the curve with the highest probability on the reduced space of a Principal Component Analysis (PCA). Outliers are defined as curves that fall outside the band corresponding to the quantile given by `threshold`. The non-outlying region is defined as the band made up of all the non-outlying curves. Behind the scene, the dataset is represented as a matrix. Each line corresponding to a 1D curve. This matrix is then decomposed using Principal Components Analysis (PCA). This allows to represent the data using a finite number of modes, or components. This compression process allows to turn the functional representation into a scalar representation of the matrix. In other words, you can visualize each curve from its components. Each curve is thus a point in this reduced space. With 2 components, this is called a bivariate plot (2D plot). In this plot, if some points are adjacent (similar components), it means that back in the original space, the curves are similar. Then, finding the median curve means finding the higher density region (HDR) in the reduced space. Moreover, the more you get away from this HDR, the more the curve is unlikely to be similar to the other curves. Using a kernel smoothing technique, the probability density function (PDF) of the multivariate space can be recovered. From this PDF, it is possible to compute the density probability linked to the cluster of points and plot its contours. Finally, using these contours, the different quantiles can be extracted along with the median curve and the outliers. Steps to produce the HDR boxplot include: 1. Compute a multivariate kernel density estimation 2. Compute contour lines for quantiles 90%, 50% and `alpha` % 3. Plot the bivariate plot 4. Compute median curve along with quantiles and outliers curves. References ---------- [1] R.J. Hyndman and H.L. Shang, "Rainbow Plots, Bagplots, and Boxplots for Functional Data", vol. 19, pp. 29-45, 2010. Examples -------- Load the El Nino dataset. Consists of 60 years worth of Pacific Ocean sea surface temperature data. >>> import matplotlib.pyplot as plt >>> import statsmodels.api as sm >>> data = sm.datasets.elnino.load() Create a functional boxplot. We see that the years 1982-83 and 1997-98 are outliers; these are the years where El Nino (a climate pattern characterized by warming up of the sea surface and higher air pressures) occurred with unusual intensity. >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> res = sm.graphics.hdrboxplot(data.raw_data[:, 1:], ... labels=data.raw_data[:, 0].astype(int), ... ax=ax) >>> ax.set_xlabel("Month of the year") >>> ax.set_ylabel("Sea surface temperature (C)") >>> ax.set_xticks(np.arange(13, step=3) - 1) >>> ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"]) >>> ax.set_xlim([-0.2, 11.2]) >>> plt.show() .. plot:: plots/graphics_functional_hdrboxplot.py See Also -------- banddepth, rainbowplot, fboxplot """ fig, ax = utils.create_mpl_ax(ax) if labels is None: # For use with pandas, get the labels if hasattr(data, 'index'): labels = data.index else: labels = np.arange(len(data)) data = np.asarray(data) if xdata is None: xdata = np.arange(data.shape[1]) n_samples, dim = data.shape # PCA and bivariate plot pca = PCA(data, ncomp=ncomp) data_r = pca.factors # Create gaussian kernel ks_gaussian = KDEMultivariate(data_r, bw=bw, var_type='c' * data_r.shape[1]) # Boundaries of the n-variate space bounds = np.array([data_r.min(axis=0), data_r.max(axis=0)]).T # Compute contour line of pvalue linked to a given probability level if alpha is None: alpha = [threshold, 0.9, 0.5] else: alpha.extend([threshold, 0.9, 0.5]) alpha = list(set(alpha)) alpha.sort(reverse=True) n_quantiles = len(alpha) pdf_r = ks_gaussian.pdf(data_r).flatten() pvalues = [np.percentile(pdf_r, (1 - alpha[i]) * 100, interpolation='linear') for i in range(n_quantiles)] # Find mean, outliers curves if have_de_optim: median = differential_evolution(lambda x: - ks_gaussian.pdf(x), bounds=bounds, maxiter=5).x else: median = brute(lambda x: - ks_gaussian.pdf(x), ranges=bounds, finish=fmin) outliers_idx = np.where(pdf_r < pvalues[alpha.index(threshold)])[0] labels_outlier = [labels[i] for i in outliers_idx] outliers = data[outliers_idx] # Find HDR given some quantiles def _band_quantiles(band): """Find extreme curves for a quantile band. From the `band` of quantiles, the associated PDF extrema values are computed. If `min_alpha` is not provided (single quantile value), `max_pdf` is set to `1E6` in order not to constrain the problem on high values. An optimization is performed per component in order to find the min and max curves. This is done by comparing the PDF value of a given curve with the band PDF. Parameters ---------- band : array_like alpha values ``(max_alpha, min_alpha)`` ex: ``[0.9, 0.5]`` Returns ------- band_quantiles : list of 1-D array ``(max_quantile, min_quantile)`` (2, n_features) """ min_pdf = pvalues[alpha.index(band[0])] try: max_pdf = pvalues[alpha.index(band[1])] except IndexError: max_pdf = 1E6 band = [min_pdf, max_pdf] pool = Pool() data = zip(range(dim), itertools.repeat((band, pca, bounds, ks_gaussian))) band_quantiles = pool.map(_min_max_band, data) pool.terminate() pool.close() band_quantiles = list(zip(*band_quantiles)) return band_quantiles extra_alpha = [i for i in alpha if 0.5 != i and 0.9 != i and threshold != i] if extra_alpha != []: extra_quantiles = [y for x in extra_alpha for y in _band_quantiles([x])] else: extra_quantiles = [] # Inverse transform from n-variate plot to dataset dataset's shape median = _inverse_transform(pca, median)[0] hdr_90 = _band_quantiles([0.9, 0.5]) hdr_50 = _band_quantiles([0.5]) hdr_res = HdrResults({ "median": median, "hdr_50": hdr_50, "hdr_90": hdr_90, "extra_quantiles": extra_quantiles, "outliers": outliers, "outliers_idx": outliers_idx }) # Plots ax.plot(np.array([xdata] * n_samples).T, data.T, c='c', alpha=.1, label=None) ax.plot(xdata, median, c='k', label='Median') fill_betweens = [] fill_betweens.append(ax.fill_between(xdata, *hdr_50, color='gray', alpha=.4, label='50% HDR')) fill_betweens.append(ax.fill_between(xdata, *hdr_90, color='gray', alpha=.3, label='90% HDR')) if len(extra_quantiles) != 0: ax.plot(np.array([xdata] * len(extra_quantiles)).T, np.array(extra_quantiles).T, c='y', ls='-.', alpha=.4, label='Extra quantiles') if len(outliers) != 0: for ii, outlier in enumerate(outliers): label = str(labels_outlier[ii]) if labels_outlier is not None else 'Outliers' ax.plot(xdata, outlier, ls='--', alpha=0.7, label=label) handles, labels = ax.get_legend_handles_labels() # Proxy artist for fill_between legend entry # See http://matplotlib.org/1.3.1/users/legend_guide.html plt = _import_mpl() for label, fill_between in zip(['50% HDR', '90% HDR'], fill_betweens): p = plt.Rectangle((0, 0), 1, 1, fc=fill_between.get_facecolor()[0]) handles.append(p) labels.append(label) by_label = OrderedDict(zip(labels, handles)) if len(outliers) != 0: by_label.pop('Median') by_label.pop('50% HDR') by_label.pop('90% HDR') ax.legend(by_label.values(), by_label.keys(), loc='best') return fig, hdr_res
def _hierarchical_split(count_dict, horizontal=True, gap=0.05): """ Split a square in a hierarchical way given a contingency table. Hierarchically split the unit square in alternate directions in proportion to the subdivision contained in the contingency table count_dict. This is the function that actually perform the tiling for the creation of the mosaic plot. If the gap array has been specified it will insert a corresponding amount of space (proportional to the unit lenght), while retaining the proportionality of the tiles. Parameters ---------- count_dict : dict Dictionary containing the contingency table. Each category should contain a non-negative number with a tuple as index. It expects that all the combination of keys to be representes; if that is not true, will automatically consider the missing values as 0 horizontal : bool The starting direction of the split (by default along the horizontal axis) gap : float or array of floats The list of gaps to be applied on each subdivision. If the lenght of the given array is less of the number of subcategories (or if it's a single number) it will extend it with exponentially decreasing gaps Returns ---------- base_rect : dict A dictionary containing the result of the split. To each key is associated a 4-tuple of coordinates that are required to create the corresponding rectangle: 0 - x position of the lower left corner 1 - y position of the lower left corner 2 - width of the rectangle 3 - height of the rectangle """ # this is the unit square that we are going to divide base_rect = OrderedDict([(tuple(), (0, 0, 1, 1))]) # get the list of each possible value for each level categories_levels = _categories_level(list(iterkeys(count_dict))) L = len(categories_levels) # recreate the gaps vector starting from an int if not np.iterable(gap): gap = [gap / 1.5 ** idx for idx in range(L)] # extend if it's too short if len(gap) < L: last = gap[-1] gap = list(*gap) + [last / 1.5 ** idx for idx in range(L)] # trim if it's too long gap = gap[:L] # put the count dictionay in order for the keys # this will allow some code simplification count_ordered = OrderedDict([(k, count_dict[k]) for k in list(product(*categories_levels))]) for cat_idx, cat_enum in enumerate(categories_levels): # get the partial key up to the actual level base_keys = list(product(*categories_levels[:cat_idx])) for key in base_keys: # for each partial and each value calculate how many # observation we have in the counting dictionary part_count = [_reduce_dict(count_ordered, key + (partial,)) for partial in cat_enum] # reduce the gap for subsequents levels new_gap = gap[cat_idx] # split the given subkeys in the rectangle dictionary base_rect = _key_splitting(base_rect, cat_enum, part_count, key, horizontal, new_gap) horizontal = not horizontal return base_rect
def summary_model(results): '''Create a dict with information about the model ''' def time_now(*args, **kwds): now = datetime.datetime.now() return now.strftime('%Y-%m-%d %H:%M') info = OrderedDict() # I added some informations of Panel regression from the package linearmodels. # Panel regression has some different attribute names, but it doesn't matter here. info['Model:'] = lambda x: x.model.__class__.__name__ info['Model Family:'] = lambda x: x.family.__class.__name__ info['Link Function:'] = lambda x: x.family.link.__class__.__name__ info['Dependent Variable:'] = lambda x: x.model.endog_names # 1 info['Dependent Variable:'] = lambda x: x.model.dependent.vars[0] info['Date:'] = time_now info['No. Observations:'] = lambda x: "%#6d" % x.nobs info['Df Model:'] = lambda x: "%#6d" % x.df_model info['Df Residuals:'] = lambda x: "%#6d" % x.df_resid info['Converged:'] = lambda x: x.mle_retvals['converged'] info['No. Iterations:'] = lambda x: x.mle_retvals['iterations'] info['Method:'] = lambda x: x.method info['Norm:'] = lambda x: x.fit_options['norm'] info['Scale Est.:'] = lambda x: x.fit_options['scale_est'] info['Cov. Type:'] = lambda x: x.fit_options['cov'] # 2 #I add the x.cov_type because there is no attribute fit_options like OLS model info['Covariance Type:'] = lambda x: x.cov_type info['Covariance Type:'] = lambda x: x._cov_type info['R-squared:'] = lambda x: "%#8.3f" % x.rsquared info['Adj. R-squared:'] = lambda x: "%#8.3f" % x.rsquared_adj info['Pseudo R-squared:'] = lambda x: "%#8.3f" % x.prsquared info['AIC:'] = lambda x: "%8.4f" % x.aic info['BIC:'] = lambda x: "%8.4f" % x.bic info['Log-Likelihood:'] = lambda x: "%#8.5g" % x.llf # 3 info['Log-Likelihood:'] = lambda x: "%#8.5g" % x.loglike info['LL-Null:'] = lambda x: "%#8.5g" % x.llnull info['LLR p-value:'] = lambda x: "%#8.5g" % x.llr_pvalue info['Deviance:'] = lambda x: "%#8.5g" % x.deviance info['Pearson chi2:'] = lambda x: "%#6.3g" % x.pearson_chi2 info['F-statistic:'] = lambda x: "%#8.4g" % x.fvalue # 4 info['F-statistic:'] = lambda x: "%#8.4g" % x.f_statistic.stat info['Prob (F-statistic):'] = lambda x: "%#6.3g" % x.f_pvalue # 5 info['Prob (F-statistic):'] = lambda x: "%#6.3g" % x.f_statistic.pval info['Scale:'] = lambda x: "%#8.5g" % x.scale # 6 info['Effects:'] = lambda x: ','.join(['%#8s' % i for i in x.included_effects]) out = OrderedDict() for key, func in iteritems(info): try: out[key] = func(results) # NOTE: some models don't have loglike defined (RLM), so that's NIE except (AttributeError, KeyError, NotImplementedError): pass return out
def hdrboxplot(data, ncomp=2, alpha=None, threshold=0.95, bw=None, xdata=None, labels=None, ax=None): """ High Density Region boxplot Parameters ---------- data : sequence of ndarrays or 2-D ndarray The vectors of functions to create a functional boxplot from. If a sequence of 1-D arrays, these should all be the same size. The first axis is the function index, the second axis the one along which the function is defined. So ``data[0, :]`` is the first functional curve. ncomp : int, optional Number of components to use. If None, returns the as many as the smaller of the number of rows or columns in data. alpha : list of floats between 0 and 1, optional Extra quantile values to compute. Default is None threshold : float between 0 and 1, optional Percentile threshold value for outliers detection. High value means a lower sensitivity to outliers. Default is `0.95`. bw: array_like or str, optional If an array, it is a fixed user-specified bandwidth. If `None`, set to `normal_reference`. If a string, should be one of: - normal_reference: normal reference rule of thumb (default) - cv_ml: cross validation maximum likelihood - cv_ls: cross validation least squares xdata : ndarray, optional The independent variable for the data. If not given, it is assumed to be an array of integers 0..N-1 with N the length of the vectors in `data`. labels : sequence of scalar or str, optional The labels or identifiers of the curves in `data`. If not given, outliers are labeled in the plot with array indices. ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. hdr_res : HdrResults instance An `HdrResults` instance with the following attributes: - 'median', array. Median curve. - 'hdr_50', array. 50% quantile band. [sup, inf] curves - 'hdr_90', list of array. 90% quantile band. [sup, inf] curves. - 'extra_quantiles', list of array. Extra quantile band. [sup, inf] curves. - 'outliers', ndarray. Outlier curves. Notes ----- The median curve is the curve with the highest probability on the reduced space of a Principal Component Analysis (PCA). Outliers are defined as curves that fall outside the band corresponding to the quantile given by `threshold`. The non-outlying region is defined as the band made up of all the non-outlying curves. Behind the scene, the dataset is represented as a matrix. Each line corresponding to a 1D curve. This matrix is then decomposed using Principal Components Analysis (PCA). This allows to represent the data using a finite number of modes, or components. This compression process allows to turn the functional representation into a scalar representation of the matrix. In other words, you can visualize each curve from its components. Each curve is thus a point in this reduced space. With 2 components, this is called a bivariate plot (2D plot). In this plot, if some points are adjacent (similar components), it means that back in the original space, the curves are similar. Then, finding the median curve means finding the higher density region (HDR) in the reduced space. Moreover, the more you get away from this HDR, the more the curve is unlikely to be similar to the other curves. Using a kernel smoothing technique, the probability density function (PDF) of the multivariate space can be recovered. From this PDF, it is possible to compute the density probability linked to the cluster of points and plot its contours. Finally, using these contours, the different quantiles can be extracted along with the median curve and the outliers. Steps to produce the HDR boxplot include: 1. Compute a multivariate kernel density estimation 2. Compute contour lines for quantiles 90%, 50% and `alpha` % 3. Plot the bivariate plot 4. Compute median curve along with quantiles and outliers curves. References ---------- [1] R.J. Hyndman and H.L. Shang, "Rainbow Plots, Bagplots, and Boxplots for Functional Data", vol. 19, pp. 29-45, 2010. Examples -------- Load the El Nino dataset. Consists of 60 years worth of Pacific Ocean sea surface temperature data. >>> import matplotlib.pyplot as plt >>> import statsmodels.api as sm >>> data = sm.datasets.elnino.load() Create a functional boxplot. We see that the years 1982-83 and 1997-98 are outliers; these are the years where El Nino (a climate pattern characterized by warming up of the sea surface and higher air pressures) occurred with unusual intensity. >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> res = sm.graphics.hdrboxplot(data.raw_data[:, 1:], ... labels=data.raw_data[:, 0].astype(int), ... ax=ax) >>> ax.set_xlabel("Month of the year") >>> ax.set_ylabel("Sea surface temperature (C)") >>> ax.set_xticks(np.arange(13, step=3) - 1) >>> ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"]) >>> ax.set_xlim([-0.2, 11.2]) >>> plt.show() .. plot:: plots/graphics_functional_hdrboxplot.py See Also -------- banddepth, rainbowplot, fboxplot """ fig, ax = utils.create_mpl_ax(ax) if labels is None: # For use with pandas, get the labels if hasattr(data, 'index'): labels = data.index else: labels = np.arange(len(data)) data = np.asarray(data) if xdata is None: xdata = np.arange(data.shape[1]) n_samples, dim = data.shape # PCA and bivariate plot pca = PCA(data, ncomp=ncomp) data_r = pca.factors # Create gaussian kernel ks_gaussian = KDEMultivariate(data_r, bw=bw, var_type='c' * data_r.shape[1]) # Boundaries of the n-variate space bounds = np.array([data_r.min(axis=0), data_r.max(axis=0)]).T # Compute contour line of pvalue linked to a given probability level if alpha is None: alpha = [threshold, 0.9, 0.5] else: alpha.extend([threshold, 0.9, 0.5]) alpha = list(set(alpha)) alpha.sort(reverse=True) n_quantiles = len(alpha) pdf_r = ks_gaussian.pdf(data_r).flatten() pvalues = [ np.percentile(pdf_r, (1 - alpha[i]) * 100, interpolation='linear') for i in range(n_quantiles) ] # Find mean, outliers curves if have_de_optim: median = differential_evolution(lambda x: -ks_gaussian.pdf(x), bounds=bounds, maxiter=5).x else: median = brute(lambda x: -ks_gaussian.pdf(x), ranges=bounds, finish=fmin) outliers_idx = np.where(pdf_r < pvalues[alpha.index(threshold)])[0] labels_outlier = [labels[i] for i in outliers_idx] outliers = data[outliers_idx] # Find HDR given some quantiles def _band_quantiles(band): """Find extreme curves for a quantile band. From the `band` of quantiles, the associated PDF extrema values are computed. If `min_alpha` is not provided (single quantile value), `max_pdf` is set to `1E6` in order not to constrain the problem on high values. An optimization is performed per component in order to find the min and max curves. This is done by comparing the PDF value of a given curve with the band PDF. Parameters ---------- band : array_like alpha values ``(max_alpha, min_alpha)`` ex: ``[0.9, 0.5]`` Returns ------- band_quantiles : list of 1-D array ``(max_quantile, min_quantile)`` (2, n_features) """ min_pdf = pvalues[alpha.index(band[0])] try: max_pdf = pvalues[alpha.index(band[1])] except IndexError: max_pdf = 1E6 band = [min_pdf, max_pdf] pool = Pool() data = zip(range(dim), itertools.repeat((band, pca, bounds, ks_gaussian))) band_quantiles = pool.map(_min_max_band, data) pool.terminate() pool.close() band_quantiles = list(zip(*band_quantiles)) return band_quantiles extra_alpha = [ i for i in alpha if 0.5 != i and 0.9 != i and threshold != i ] if extra_alpha != []: extra_quantiles = [ y for x in extra_alpha for y in _band_quantiles([x]) ] else: extra_quantiles = [] # Inverse transform from n-variate plot to dataset dataset's shape median = _inverse_transform(pca, median)[0] hdr_90 = _band_quantiles([0.9, 0.5]) hdr_50 = _band_quantiles([0.5]) hdr_res = HdrResults({ "median": median, "hdr_50": hdr_50, "hdr_90": hdr_90, "extra_quantiles": extra_quantiles, "outliers": outliers, "outliers_idx": outliers_idx }) # Plots ax.plot(np.array([xdata] * n_samples).T, data.T, c='c', alpha=.1, label=None) ax.plot(xdata, median, c='k', label='Median') fill_betweens = [] fill_betweens.append( ax.fill_between(xdata, *hdr_50, color='gray', alpha=.4, label='50% HDR')) fill_betweens.append( ax.fill_between(xdata, *hdr_90, color='gray', alpha=.3, label='90% HDR')) if len(extra_quantiles) != 0: ax.plot(np.array([xdata] * len(extra_quantiles)).T, np.array(extra_quantiles).T, c='y', ls='-.', alpha=.4, label='Extra quantiles') if len(outliers) != 0: for ii, outlier in enumerate(outliers): label = str(labels_outlier[ii] ) if labels_outlier is not None else 'Outliers' ax.plot(xdata, outlier, ls='--', alpha=0.7, label=label) handles, labels = ax.get_legend_handles_labels() # Proxy artist for fill_between legend entry # See http://matplotlib.org/1.3.1/users/legend_guide.html plt = _import_mpl() for label, fill_between in zip(['50% HDR', '90% HDR'], fill_betweens): p = plt.Rectangle((0, 0), 1, 1, fc=fill_between.get_facecolor()[0]) handles.append(p) labels.append(label) by_label = OrderedDict(zip(labels, handles)) if len(outliers) != 0: by_label.pop('Median') by_label.pop('50% HDR') by_label.pop('90% HDR') ax.legend(by_label.values(), by_label.keys(), loc='best') return fig, hdr_res
class VARMAX(MLEModel): r""" Vector Autoregressive Moving Average with eXogenous regressors model Parameters ---------- endog : array_like The observed time-series process :math:`y`, , shaped nobs x k_endog. exog : array_like, optional Array of exogenous regressors, shaped nobs x k. order : iterable The (p,q) order of the model for the number of AR and MA parameters to use. trend : {'nc', 'c'}, optional Parameter controlling the deterministic trend polynomial. Can be specified as a string where 'c' indicates a constant intercept and 'nc' indicates no intercept term. error_cov_type : {'diagonal', 'unstructured'}, optional The structure of the covariance matrix of the error term, where "unstructured" puts no restrictions on the matrix and "diagonal" requires it to be a diagonal matrix (uncorrelated errors). Default is "unstructured". measurement_error : boolean, optional Whether or not to assume the endogenous observations `endog` were measured with error. Default is False. enforce_stationarity : boolean, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. enforce_invertibility : boolean, optional Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. Default is True. **kwargs Keyword arguments may be used to provide default values for state space matrices or for Kalman filtering options. See `Representation`, and `KalmanFilter` for more details. Attributes ---------- order : iterable The (p,q) order of the model for the number of AR and MA parameters to use. trend : {'nc', 'c'}, optional Parameter controlling the deterministic trend polynomial. Can be specified as a string where 'c' indicates a constant intercept and 'nc' indicates no intercept term. error_cov_type : {'diagonal', 'unstructured'}, optional The structure of the covariance matrix of the error term, where "unstructured" puts no restrictions on the matrix and "diagonal" requires it to be a diagonal matrix (uncorrelated errors). Default is "unstructured". measurement_error : boolean, optional Whether or not to assume the endogenous observations `endog` were measured with error. Default is False. enforce_stationarity : boolean, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. enforce_invertibility : boolean, optional Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. Default is True. Notes ----- Generically, the VARMAX model is specified (see for example chapter 18 of [1]_): .. math:: y_t = \nu + A_1 y_{t-1} + \dots + A_p y_{t-p} + B x_t + \epsilon_t + M_1 \epsilon_{t-1} + \dots M_q \epsilon_{t-q} where :math:`\epsilon_t \sim N(0, \Omega)`, and where :math:`y_t` is a `k_endog x 1` vector. Additionally, this model allows considering the case where the variables are measured with error. Note that in the full VARMA(p,q) case there is a fundamental identification problem in that the coefficient matrices :math:`\{A_i, M_j\}` are not generally unique, meaning that for a given time series process there may be multiple sets of matrices that equivalently represent it. See Chapter 12 of [1]_ for more informationl. Although this class can be used to estimate VARMA(p,q) models, a warning is issued to remind users that no steps have been taken to ensure identification in this case. References ---------- .. [1] Lutkepohl, Helmut. 2007. New Introduction to Multiple Time Series Analysis. Berlin: Springer. """ def __init__(self, endog, exog=None, order=(1, 0), trend='c', error_cov_type='unstructured', measurement_error=False, enforce_stationarity=True, enforce_invertibility=True, **kwargs): # Model parameters self.error_cov_type = error_cov_type self.measurement_error = measurement_error self.enforce_stationarity = enforce_stationarity self.enforce_invertibility = enforce_invertibility # Save the given orders self.order = order self.trend = trend # Model orders self.k_ar = int(order[0]) self.k_ma = int(order[1]) self.k_trend = int(self.trend == 'c') # Check for valid model if trend not in ['c', 'nc']: raise ValueError('Invalid trend specification.') if error_cov_type not in ['diagonal', 'unstructured']: raise ValueError('Invalid error covariance matrix type' ' specification.') if self.k_ar == 0 and self.k_ma == 0: raise ValueError('Invalid VARMAX(p,q) specification; at least one' ' p,q must be greater than zero.') # Warn for VARMA model if self.k_ar > 0 and self.k_ma > 0: warn('Estimation of VARMA(p,q) models is not generically robust,' ' due especially to identification issues.') # Exogenous data self.k_exog = 0 if exog is not None: exog_is_using_pandas = _is_using_pandas(exog, None) if not exog_is_using_pandas: exog = np.asarray(exog) # Make sure we have 2-dimensional array if exog.ndim == 1: if not exog_is_using_pandas: exog = exog[:, None] else: exog = pd.DataFrame(exog) self.k_exog = exog.shape[1] # Note: at some point in the future might add state regression, as in # SARIMAX. self.mle_regression = self.k_exog > 0 # We need to have an array or pandas at this point if not _is_using_pandas(endog, None): endog = np.asanyarray(endog) # Model order # Used internally in various places _min_k_ar = max(self.k_ar, 1) self._k_order = _min_k_ar + self.k_ma # Number of states k_endog = endog.shape[1] k_posdef = k_endog k_states = k_endog * self._k_order # By default, initialize as stationary kwargs.setdefault('initialization', 'stationary') # By default, use LU decomposition kwargs.setdefault('inversion_method', INVERT_UNIVARIATE | SOLVE_LU) # Initialize the state space model super(VARMAX, self).__init__(endog, exog=exog, k_states=k_states, k_posdef=k_posdef, **kwargs) # Initialize the parameters self.parameters = OrderedDict() self.parameters['trend'] = self.k_endog * self.k_trend self.parameters['ar'] = self.k_endog**2 * self.k_ar self.parameters['ma'] = self.k_endog**2 * self.k_ma self.parameters['regression'] = self.k_endog * self.k_exog if self.error_cov_type == 'diagonal': self.parameters['state_cov'] = self.k_endog # These parameters fill in a lower-triangular matrix which is then # dotted with itself to get a positive definite matrix. elif self.error_cov_type == 'unstructured': self.parameters['state_cov'] = (int(self.k_endog * (self.k_endog + 1) / 2)) self.parameters['obs_cov'] = self.k_endog * self.measurement_error self.k_params = sum(self.parameters.values()) # Initialize known elements of the state space matrices # If we have exog effects, then the state intercept needs to be # time-varying if self.k_exog > 0: self.ssm['state_intercept'] = np.zeros((self.k_states, self.nobs)) # The design matrix is just an identity for the first k_endog states idx = np.diag_indices(self.k_endog) self.ssm[('design', ) + idx] = 1 # The transition matrix is described in four blocks, where the upper # left block is in companion form with the autoregressive coefficient # matrices (so it is shaped k_endog * k_ar x k_endog * k_ar) ... if self.k_ar > 0: idx = np.diag_indices((self.k_ar - 1) * self.k_endog) idx = idx[0] + self.k_endog, idx[1] self.ssm[('transition', ) + idx] = 1 # ... and the lower right block is in companion form with zeros as the # coefficient matrices (it is shaped k_endog * k_ma x k_endog * k_ma). idx = np.diag_indices((self.k_ma - 1) * self.k_endog) idx = (idx[0] + (_min_k_ar + 1) * self.k_endog, idx[1] + _min_k_ar * self.k_endog) self.ssm[('transition', ) + idx] = 1 # The selection matrix is described in two blocks, where the upper # block selects the all k_posdef errors in the first k_endog rows # (the upper block is shaped k_endog * k_ar x k) and the lower block # also selects all k_posdef errors in the first k_endog rows (the lower # block is shaped k_endog * k_ma x k). idx = np.diag_indices(self.k_endog) self.ssm[('selection', ) + idx] = 1 idx = idx[0] + _min_k_ar * self.k_endog, idx[1] if self.k_ma > 0: self.ssm[('selection', ) + idx] = 1 # Cache some indices if self.trend == 'c' and self.k_exog == 0: self._idx_state_intercept = np.s_['state_intercept', :k_endog] elif self.k_exog > 0: self._idx_state_intercept = np.s_['state_intercept', :k_endog, :] if self.k_ar > 0: self._idx_transition = np.s_['transition', :k_endog, :] else: self._idx_transition = np.s_['transition', :k_endog, k_endog:] if self.error_cov_type == 'diagonal': self._idx_state_cov = (('state_cov', ) + np.diag_indices(self.k_endog)) elif self.error_cov_type == 'unstructured': self._idx_lower_state_cov = np.tril_indices(self.k_endog) if self.measurement_error: self._idx_obs_cov = ('obs_cov', ) + np.diag_indices(self.k_endog) # Cache some slices def _slice(key, offset): length = self.parameters[key] param_slice = np.s_[offset:offset + length] offset += length return param_slice, offset offset = 0 self._params_trend, offset = _slice('trend', offset) self._params_ar, offset = _slice('ar', offset) self._params_ma, offset = _slice('ma', offset) self._params_regression, offset = _slice('regression', offset) self._params_state_cov, offset = _slice('state_cov', offset) self._params_obs_cov, offset = _slice('obs_cov', offset) def filter(self, params, transformed=True, cov_type=None, return_ssm=False, **kwargs): params = np.array(params, ndmin=1) # Transform parameters if necessary if not transformed: params = self.transform_params(params) transformed = True # Get the state space output result = super(VARMAX, self).filter(params, transformed, cov_type, return_ssm=True, **kwargs) # Wrap in a results object if not return_ssm: result_kwargs = {} if cov_type is not None: result_kwargs['cov_type'] = cov_type result = VARMAXResultsWrapper( VARMAXResults(self, params, result, **result_kwargs)) return result filter.__doc__ = MLEModel.filter.__doc__ @property def start_params(self): params = np.zeros(self.k_params, dtype=np.float64) # A. Run a multivariate regression to get beta estimates endog = self.endog.copy() exog = self.exog.copy() if self.k_exog > 0 else None # Although the Kalman filter can deal with missing values in endog, # conditional sum of squares cannot if np.any(np.isnan(endog)): endog = endog[~np.isnan(endog)] if exog is not None: exog = exog[~np.isnan(endog)] # Regression effects via OLS exog_params = np.zeros(0) if self.k_exog > 0: exog_params = np.linalg.pinv(exog).dot(endog).T endog -= np.dot(exog, exog_params.T) # B. Run a VAR model on endog to get trend, AR parameters ar_params = [] k_ar = self.k_ar if self.k_ar > 0 else 1 mod_ar = var_model.VAR(endog) res_ar = mod_ar.fit(maxlags=k_ar, ic=None, trend=self.trend) ar_params = np.array(res_ar.params.T) if self.trend == 'c': trend_params = ar_params[:, 0] if self.k_ar > 0: ar_params = ar_params[:, 1:].ravel() else: ar_params = [] elif self.k_ar > 0: ar_params = ar_params.ravel() else: ar_params = [] endog = res_ar.resid # Test for stationarity if self.k_ar > 0 and self.enforce_stationarity: coefficient_matrices = (ar_params.reshape(self.k_endog * self.k_ar, self.k_endog).T).reshape( self.k_endog, self.k_endog, self.k_ar).T stationary = is_invertible([1] + list(-coefficient_matrices)) if not stationary: raise ValueError( 'Non-stationary starting autoregressive' ' parameters found with `enforce_stationarity`' ' set to True.') # C. Run a VAR model on the residuals to get MA parameters ma_params = [] if self.k_ma > 0: mod_ma = var_model.VAR(endog) res_ma = mod_ma.fit(maxlags=self.k_ma, ic=None, trend='nc') ma_params = np.array(res_ma.params.T).ravel() # Test for invertibility if self.enforce_invertibility: coefficient_matrices = (ma_params.reshape( self.k_endog * self.k_ma, self.k_endog).T).reshape(self.k_endog, self.k_endog, self.k_ma).T invertible = is_invertible([1] + list(-coefficient_matrices)) if not invertible: raise ValueError( 'Non-invertible starting moving-average' ' parameters found with `enforce_stationarity`' ' set to True.') # 1. Intercept terms if self.trend == 'c': params[self._params_trend] = trend_params # 2. AR terms params[self._params_ar] = ar_params # 3. MA terms params[self._params_ma] = ma_params # 4. Regression terms if self.mle_regression: params[self._params_regression] = exog_params.ravel() # 5. State covariance terms if self.error_cov_type == 'diagonal': params[self._params_state_cov] = res_ar.sigma_u.diagonal() elif self.error_cov_type == 'unstructured': cov_factor = np.linalg.cholesky(res_ar.sigma_u) params[self._params_state_cov] = ( cov_factor[self._idx_lower_state_cov].ravel()) # 5. Measurement error variance terms if self.measurement_error: if self.k_ma > 0: params[self._params_obs_cov] = res_ma.sigma_u.diagonal() else: params[self._params_obs_cov] = res_ar.sigma_u.diagonal() return params @property def param_names(self): param_names = [] # 1. Intercept terms if self.trend == 'c': param_names += [ 'const.%s' % self.endog_names[i] for i in range(self.k_endog) ] # 2. AR terms param_names += [ 'L%d.%s.%s' % (i + 1, self.endog_names[k], self.endog_names[j]) for j in range(self.k_endog) for i in range(self.k_ar) for k in range(self.k_endog) ] # 3. MA terms param_names += [ 'L%d.e(%s).%s' % (i + 1, self.endog_names[k], self.endog_names[j]) for j in range(self.k_endog) for i in range(self.k_ma) for k in range(self.k_endog) ] # 4. Regression terms param_names += [ 'beta.%s.%s' % (self.exog_names[j], self.endog_names[i]) for i in range(self.k_endog) for j in range(self.k_exog) ] # 5. State covariance terms if self.error_cov_type == 'diagonal': param_names += [ 'sigma2.%s' % self.endog_names[i] for i in range(self.k_endog) ] elif self.error_cov_type == 'unstructured': param_names += [ ('sqrt.var.%s' % self.endog_names[i] if i == j else 'sqrt.cov.%s.%s' % (self.endog_names[j], self.endog_names[i])) for i in range(self.k_endog) for j in range(i + 1) ] # 5. Measurement error variance terms if self.measurement_error: param_names += [ 'measurement_variance.%s' % self.endog_names[i] for i in range(self.k_endog) ] return param_names def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evalation. Notes ----- Constrains the factor transition to be stationary and variances to be positive. """ unconstrained = np.array(unconstrained, ndmin=1) constrained = np.zeros(unconstrained.shape, dtype=unconstrained.dtype) # 1. Intercept terms: nothing to do constrained[self._params_trend] = unconstrained[self._params_trend] # 2. AR terms: optionally force to be stationary if self.k_ar > 0 and self.enforce_stationarity: # Create the state covariance matrix if self.error_cov_type == 'diagonal': state_cov = np.diag(unconstrained[self._params_state_cov]**2) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=unconstrained.dtype) state_cov_lower[self._idx_lower_state_cov] = ( unconstrained[self._params_state_cov]) state_cov = np.dot(state_cov_lower, state_cov_lower.T) # Transform the parameters coefficients = unconstrained[self._params_ar].reshape( self.k_endog, self.k_endog * self.k_ar) coefficient_matrices, variance = ( constrain_stationary_multivariate(coefficients, state_cov)) constrained[self._params_ar] = coefficient_matrices.ravel() else: constrained[self._params_ar] = unconstrained[self._params_ar] # 3. MA terms: optionally force to be invertible if self.k_ma > 0 and self.enforce_invertibility: # Transform the parameters, using an identity variance matrix state_cov = np.eye(self.k_endog, dtype=unconstrained.dtype) coefficients = unconstrained[self._params_ma].reshape( self.k_endog, self.k_endog * self.k_ma) coefficient_matrices, variance = ( constrain_stationary_multivariate(coefficients, state_cov)) constrained[self._params_ma] = coefficient_matrices.ravel() else: constrained[self._params_ma] = unconstrained[self._params_ma] # 4. Regression terms: nothing to do constrained[self._params_regression] = ( unconstrained[self._params_regression]) # 5. State covariance terms # If we have variances, force them to be positive if self.error_cov_type == 'diagonal': constrained[self._params_state_cov] = ( unconstrained[self._params_state_cov]**2) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': constrained[self._params_state_cov] = ( unconstrained[self._params_state_cov]) # 5. Measurement error variance terms if self.measurement_error: # Force these to be positive constrained[self._params_obs_cov] = ( unconstrained[self._params_obs_cov]**2) return constrained def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer. Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evalution, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. """ constrained = np.array(constrained, ndmin=1) unconstrained = np.zeros(constrained.shape, dtype=constrained.dtype) # 1. Intercept terms: nothing to do unconstrained[self._params_trend] = constrained[self._params_trend] # 2. AR terms: optionally were forced to be stationary if self.k_ar > 0 and self.enforce_stationarity: # Create the state covariance matrix if self.error_cov_type == 'diagonal': state_cov = np.diag(constrained[self._params_state_cov]) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=constrained.dtype) state_cov_lower[self._idx_lower_state_cov] = ( constrained[self._params_state_cov]) state_cov = np.dot(state_cov_lower, state_cov_lower.T) # Transform the parameters coefficients = constrained[self._params_ar].reshape( self.k_endog, self.k_endog * self.k_ar) unconstrained_matrices, variance = ( unconstrain_stationary_multivariate(coefficients, state_cov)) unconstrained[self._params_ar] = unconstrained_matrices.ravel() else: unconstrained[self._params_ar] = constrained[self._params_ar] # 3. MA terms: optionally were forced to be invertible if self.k_ma > 0 and self.enforce_invertibility: # Transform the parameters, using an identity variance matrix state_cov = np.eye(self.k_endog, dtype=constrained.dtype) coefficients = constrained[self._params_ma].reshape( self.k_endog, self.k_endog * self.k_ma) unconstrained_matrices, variance = ( unconstrain_stationary_multivariate(coefficients, state_cov)) unconstrained[self._params_ma] = unconstrained_matrices.ravel() else: unconstrained[self._params_ma] = constrained[self._params_ma] # 4. Regression terms: nothing to do unconstrained[self._params_regression] = ( constrained[self._params_regression]) # 5. State covariance terms # If we have variances, then these were forced to be positive if self.error_cov_type == 'diagonal': unconstrained[self._params_state_cov] = ( constrained[self._params_state_cov]**0.5) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': unconstrained[self._params_state_cov] = ( constrained[self._params_state_cov]) # 5. Measurement error variance terms if self.measurement_error: # These were forced to be positive unconstrained[self._params_obs_cov] = ( constrained[self._params_obs_cov]**0.5) return unconstrained def update(self, params, *args, **kwargs): params = super(VARMAX, self).update(params, *args, **kwargs) # 1. State intercept if self.mle_regression: exog_params = params[self._params_regression].reshape( self.k_endog, self.k_exog).T intercept = np.dot(self.exog, exog_params) if self.trend == 'c': intercept += params[self._params_trend] self.ssm[self._idx_state_intercept] = intercept.T elif self.trend == 'c': self.ssm[self._idx_state_intercept] = params[self._params_trend] # 2. Transition ar = params[self._params_ar].reshape(self.k_endog, self.k_endog * self.k_ar) ma = params[self._params_ma].reshape(self.k_endog, self.k_endog * self.k_ma) self.ssm[self._idx_transition] = np.c_[ar, ma] # 3. State covariance if self.error_cov_type == 'diagonal': self.ssm[self._idx_state_cov] = (params[self._params_state_cov]) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=params.dtype) state_cov_lower[self._idx_lower_state_cov] = ( params[self._params_state_cov]) self.ssm['state_cov'] = np.dot(state_cov_lower, state_cov_lower.T) # 4. Observation covariance if self.measurement_error: self.ssm[self._idx_obs_cov] = params[self._params_obs_cov]
def __init__(self, endog, exog=None, order=(1, 0), trend='c', error_cov_type='unstructured', measurement_error=False, enforce_stationarity=True, enforce_invertibility=True, **kwargs): # Model parameters self.error_cov_type = error_cov_type self.measurement_error = measurement_error self.enforce_stationarity = enforce_stationarity self.enforce_invertibility = enforce_invertibility # Save the given orders self.order = order self.trend = trend # Model orders self.k_ar = int(order[0]) self.k_ma = int(order[1]) self.k_trend = int(self.trend == 'c') # Check for valid model if trend not in ['c', 'nc']: raise ValueError('Invalid trend specification.') if error_cov_type not in ['diagonal', 'unstructured']: raise ValueError('Invalid error covariance matrix type' ' specification.') if self.k_ar == 0 and self.k_ma == 0: raise ValueError('Invalid VARMAX(p,q) specification; at least one' ' p,q must be greater than zero.') # Warn for VARMA model if self.k_ar > 0 and self.k_ma > 0: warn('Estimation of VARMA(p,q) models is not generically robust,' ' due especially to identification issues.') # Exogenous data self.k_exog = 0 if exog is not None: exog_is_using_pandas = _is_using_pandas(exog, None) if not exog_is_using_pandas: exog = np.asarray(exog) # Make sure we have 2-dimensional array if exog.ndim == 1: if not exog_is_using_pandas: exog = exog[:, None] else: exog = pd.DataFrame(exog) self.k_exog = exog.shape[1] # Note: at some point in the future might add state regression, as in # SARIMAX. self.mle_regression = self.k_exog > 0 # We need to have an array or pandas at this point if not _is_using_pandas(endog, None): endog = np.asanyarray(endog) # Model order # Used internally in various places _min_k_ar = max(self.k_ar, 1) self._k_order = _min_k_ar + self.k_ma # Number of states k_endog = endog.shape[1] k_posdef = k_endog k_states = k_endog * self._k_order # By default, initialize as stationary kwargs.setdefault('initialization', 'stationary') # By default, use LU decomposition kwargs.setdefault('inversion_method', INVERT_UNIVARIATE | SOLVE_LU) # Initialize the state space model super(VARMAX, self).__init__(endog, exog=exog, k_states=k_states, k_posdef=k_posdef, **kwargs) # Initialize the parameters self.parameters = OrderedDict() self.parameters['trend'] = self.k_endog * self.k_trend self.parameters['ar'] = self.k_endog**2 * self.k_ar self.parameters['ma'] = self.k_endog**2 * self.k_ma self.parameters['regression'] = self.k_endog * self.k_exog if self.error_cov_type == 'diagonal': self.parameters['state_cov'] = self.k_endog # These parameters fill in a lower-triangular matrix which is then # dotted with itself to get a positive definite matrix. elif self.error_cov_type == 'unstructured': self.parameters['state_cov'] = (int(self.k_endog * (self.k_endog + 1) / 2)) self.parameters['obs_cov'] = self.k_endog * self.measurement_error self.k_params = sum(self.parameters.values()) # Initialize known elements of the state space matrices # If we have exog effects, then the state intercept needs to be # time-varying if self.k_exog > 0: self.ssm['state_intercept'] = np.zeros((self.k_states, self.nobs)) # The design matrix is just an identity for the first k_endog states idx = np.diag_indices(self.k_endog) self.ssm[('design', ) + idx] = 1 # The transition matrix is described in four blocks, where the upper # left block is in companion form with the autoregressive coefficient # matrices (so it is shaped k_endog * k_ar x k_endog * k_ar) ... if self.k_ar > 0: idx = np.diag_indices((self.k_ar - 1) * self.k_endog) idx = idx[0] + self.k_endog, idx[1] self.ssm[('transition', ) + idx] = 1 # ... and the lower right block is in companion form with zeros as the # coefficient matrices (it is shaped k_endog * k_ma x k_endog * k_ma). idx = np.diag_indices((self.k_ma - 1) * self.k_endog) idx = (idx[0] + (_min_k_ar + 1) * self.k_endog, idx[1] + _min_k_ar * self.k_endog) self.ssm[('transition', ) + idx] = 1 # The selection matrix is described in two blocks, where the upper # block selects the all k_posdef errors in the first k_endog rows # (the upper block is shaped k_endog * k_ar x k) and the lower block # also selects all k_posdef errors in the first k_endog rows (the lower # block is shaped k_endog * k_ma x k). idx = np.diag_indices(self.k_endog) self.ssm[('selection', ) + idx] = 1 idx = idx[0] + _min_k_ar * self.k_endog, idx[1] if self.k_ma > 0: self.ssm[('selection', ) + idx] = 1 # Cache some indices if self.trend == 'c' and self.k_exog == 0: self._idx_state_intercept = np.s_['state_intercept', :k_endog] elif self.k_exog > 0: self._idx_state_intercept = np.s_['state_intercept', :k_endog, :] if self.k_ar > 0: self._idx_transition = np.s_['transition', :k_endog, :] else: self._idx_transition = np.s_['transition', :k_endog, k_endog:] if self.error_cov_type == 'diagonal': self._idx_state_cov = (('state_cov', ) + np.diag_indices(self.k_endog)) elif self.error_cov_type == 'unstructured': self._idx_lower_state_cov = np.tril_indices(self.k_endog) if self.measurement_error: self._idx_obs_cov = ('obs_cov', ) + np.diag_indices(self.k_endog) # Cache some slices def _slice(key, offset): length = self.parameters[key] param_slice = np.s_[offset:offset + length] offset += length return param_slice, offset offset = 0 self._params_trend, offset = _slice('trend', offset) self._params_ar, offset = _slice('ar', offset) self._params_ma, offset = _slice('ma', offset) self._params_regression, offset = _slice('regression', offset) self._params_state_cov, offset = _slice('state_cov', offset) self._params_obs_cov, offset = _slice('obs_cov', offset)
class VARMAX(MLEModel): r""" Vector Autoregressive Moving Average with eXogenous regressors model Parameters ---------- endog : array_like The observed time-series process :math:`y`, , shaped nobs x k_endog. exog : array_like, optional Array of exogenous regressors, shaped nobs x k. order : iterable The (p,q) order of the model for the number of AR and MA parameters to use. trend : {'nc', 'c'}, optional Parameter controlling the deterministic trend polynomial. Can be specified as a string where 'c' indicates a constant intercept and 'nc' indicates no intercept term. error_cov_type : {'diagonal', 'unstructured'}, optional The structure of the covariance matrix of the error term, where "unstructured" puts no restrictions on the matrix and "diagonal" requires it to be a diagonal matrix (uncorrelated errors). Default is "unstructured". measurement_error : boolean, optional Whether or not to assume the endogenous observations `endog` were measured with error. Default is False. enforce_stationarity : boolean, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. enforce_invertibility : boolean, optional Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. Default is True. **kwargs Keyword arguments may be used to provide default values for state space matrices or for Kalman filtering options. See `Representation`, and `KalmanFilter` for more details. Attributes ---------- order : iterable The (p,q) order of the model for the number of AR and MA parameters to use. trend : {'nc', 'c'}, optional Parameter controlling the deterministic trend polynomial. Can be specified as a string where 'c' indicates a constant intercept and 'nc' indicates no intercept term. error_cov_type : {'diagonal', 'unstructured'}, optional The structure of the covariance matrix of the error term, where "unstructured" puts no restrictions on the matrix and "diagonal" requires it to be a diagonal matrix (uncorrelated errors). Default is "unstructured". measurement_error : boolean, optional Whether or not to assume the endogenous observations `endog` were measured with error. Default is False. enforce_stationarity : boolean, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. enforce_invertibility : boolean, optional Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. Default is True. Notes ----- Generically, the VARMAX model is specified (see for example chapter 18 of [1]_): .. math:: y_t = \nu + A_1 y_{t-1} + \dots + A_p y_{t-p} + B x_t + \epsilon_t + M_1 \epsilon_{t-1} + \dots M_q \epsilon_{t-q} where :math:`\epsilon_t \sim N(0, \Omega)`, and where :math:`y_t` is a `k_endog x 1` vector. Additionally, this model allows considering the case where the variables are measured with error. Note that in the full VARMA(p,q) case there is a fundamental identification problem in that the coefficient matrices :math:`\{A_i, M_j\}` are not generally unique, meaning that for a given time series process there may be multiple sets of matrices that equivalently represent it. See Chapter 12 of [1]_ for more informationl. Although this class can be used to estimate VARMA(p,q) models, a warning is issued to remind users that no steps have been taken to ensure identification in this case. References ---------- .. [1] Lutkepohl, Helmut. 2007. New Introduction to Multiple Time Series Analysis. Berlin: Springer. """ def __init__(self, endog, exog=None, order=(1, 0), trend='c', error_cov_type='unstructured', measurement_error=False, enforce_stationarity=True, enforce_invertibility=True, **kwargs): # Model parameters self.error_cov_type = error_cov_type self.measurement_error = measurement_error self.enforce_stationarity = enforce_stationarity self.enforce_invertibility = enforce_invertibility # Save the given orders self.order = order self.trend = trend # Model orders self.k_ar = int(order[0]) self.k_ma = int(order[1]) self.k_trend = int(self.trend == 'c') # Check for valid model if trend not in ['c', 'nc']: raise ValueError('Invalid trend specification.') if error_cov_type not in ['diagonal', 'unstructured']: raise ValueError('Invalid error covariance matrix type' ' specification.') if self.k_ar == 0 and self.k_ma == 0: raise ValueError('Invalid VARMAX(p,q) specification; at least one' ' p,q must be greater than zero.') # Warn for VARMA model if self.k_ar > 0 and self.k_ma > 0: warn('Estimation of VARMA(p,q) models is not generically robust,' ' due especially to identification issues.') # Exogenous data self.k_exog = 0 if exog is not None: exog_is_using_pandas = _is_using_pandas(exog, None) if not exog_is_using_pandas: exog = np.asarray(exog) # Make sure we have 2-dimensional array if exog.ndim == 1: if not exog_is_using_pandas: exog = exog[:, None] else: exog = pd.DataFrame(exog) self.k_exog = exog.shape[1] # Note: at some point in the future might add state regression, as in # SARIMAX. self.mle_regression = self.k_exog > 0 # We need to have an array or pandas at this point if not _is_using_pandas(endog, None): endog = np.asanyarray(endog) # Model order # Used internally in various places _min_k_ar = max(self.k_ar, 1) self._k_order = _min_k_ar + self.k_ma # Number of states k_endog = endog.shape[1] k_posdef = k_endog k_states = k_endog * self._k_order # By default, initialize as stationary kwargs.setdefault('initialization', 'stationary') # By default, use LU decomposition kwargs.setdefault('inversion_method', INVERT_UNIVARIATE | SOLVE_LU) # Initialize the state space model super(VARMAX, self).__init__( endog, exog=exog, k_states=k_states, k_posdef=k_posdef, **kwargs ) # Initialize the parameters self.parameters = OrderedDict() self.parameters['trend'] = self.k_endog * self.k_trend self.parameters['ar'] = self.k_endog**2 * self.k_ar self.parameters['ma'] = self.k_endog**2 * self.k_ma self.parameters['regression'] = self.k_endog * self.k_exog if self.error_cov_type == 'diagonal': self.parameters['state_cov'] = self.k_endog # These parameters fill in a lower-triangular matrix which is then # dotted with itself to get a positive definite matrix. elif self.error_cov_type == 'unstructured': self.parameters['state_cov'] = ( int(self.k_endog * (self.k_endog + 1) / 2) ) self.parameters['obs_cov'] = self.k_endog * self.measurement_error self.k_params = sum(self.parameters.values()) # Initialize known elements of the state space matrices # If we have exog effects, then the state intercept needs to be # time-varying if self.k_exog > 0: self.ssm['state_intercept'] = np.zeros((self.k_states, self.nobs)) # The design matrix is just an identity for the first k_endog states idx = np.diag_indices(self.k_endog) self.ssm[('design',) + idx] = 1 # The transition matrix is described in four blocks, where the upper # left block is in companion form with the autoregressive coefficient # matrices (so it is shaped k_endog * k_ar x k_endog * k_ar) ... if self.k_ar > 0: idx = np.diag_indices((self.k_ar - 1) * self.k_endog) idx = idx[0] + self.k_endog, idx[1] self.ssm[('transition',) + idx] = 1 # ... and the lower right block is in companion form with zeros as the # coefficient matrices (it is shaped k_endog * k_ma x k_endog * k_ma). idx = np.diag_indices((self.k_ma - 1) * self.k_endog) idx = (idx[0] + (_min_k_ar + 1) * self.k_endog, idx[1] + _min_k_ar * self.k_endog) self.ssm[('transition',) + idx] = 1 # The selection matrix is described in two blocks, where the upper # block selects the all k_posdef errors in the first k_endog rows # (the upper block is shaped k_endog * k_ar x k) and the lower block # also selects all k_posdef errors in the first k_endog rows (the lower # block is shaped k_endog * k_ma x k). idx = np.diag_indices(self.k_endog) self.ssm[('selection',) + idx] = 1 idx = idx[0] + _min_k_ar * self.k_endog, idx[1] if self.k_ma > 0: self.ssm[('selection',) + idx] = 1 # Cache some indices if self.trend == 'c' and self.k_exog == 0: self._idx_state_intercept = np.s_['state_intercept', :k_endog] elif self.k_exog > 0: self._idx_state_intercept = np.s_['state_intercept', :k_endog, :] if self.k_ar > 0: self._idx_transition = np.s_['transition', :k_endog, :] else: self._idx_transition = np.s_['transition', :k_endog, k_endog:] if self.error_cov_type == 'diagonal': self._idx_state_cov = ( ('state_cov',) + np.diag_indices(self.k_endog)) elif self.error_cov_type == 'unstructured': self._idx_lower_state_cov = np.tril_indices(self.k_endog) if self.measurement_error: self._idx_obs_cov = ('obs_cov',) + np.diag_indices(self.k_endog) # Cache some slices def _slice(key, offset): length = self.parameters[key] param_slice = np.s_[offset:offset + length] offset += length return param_slice, offset offset = 0 self._params_trend, offset = _slice('trend', offset) self._params_ar, offset = _slice('ar', offset) self._params_ma, offset = _slice('ma', offset) self._params_regression, offset = _slice('regression', offset) self._params_state_cov, offset = _slice('state_cov', offset) self._params_obs_cov, offset = _slice('obs_cov', offset) def filter(self, params, transformed=True, cov_type=None, return_ssm=False, **kwargs): params = np.array(params, ndmin=1) # Transform parameters if necessary if not transformed: params = self.transform_params(params) transformed = True # Get the state space output result = super(VARMAX, self).filter(params, transformed, cov_type, return_ssm=True, **kwargs) # Wrap in a results object if not return_ssm: result_kwargs = {} if cov_type is not None: result_kwargs['cov_type'] = cov_type result = VARMAXResultsWrapper( VARMAXResults(self, params, result, **result_kwargs) ) return result filter.__doc__ = MLEModel.filter.__doc__ @property def start_params(self): params = np.zeros(self.k_params, dtype=np.float64) # A. Run a multivariate regression to get beta estimates endog = self.endog.copy() exog = self.exog.copy() if self.k_exog > 0 else None # Although the Kalman filter can deal with missing values in endog, # conditional sum of squares cannot if np.any(np.isnan(endog)): endog = endog[~np.isnan(endog)] if exog is not None: exog = exog[~np.isnan(endog)] # Regression effects via OLS exog_params = np.zeros(0) if self.k_exog > 0: exog_params = np.linalg.pinv(exog).dot(endog).T endog -= np.dot(exog, exog_params.T) # B. Run a VAR model on endog to get trend, AR parameters ar_params = [] k_ar = self.k_ar if self.k_ar > 0 else 1 mod_ar = var_model.VAR(endog) res_ar = mod_ar.fit(maxlags=k_ar, ic=None, trend=self.trend) ar_params = np.array(res_ar.params.T) if self.trend == 'c': trend_params = ar_params[:, 0] if self.k_ar > 0: ar_params = ar_params[:, 1:].ravel() else: ar_params = [] elif self.k_ar > 0: ar_params = ar_params.ravel() else: ar_params = [] endog = res_ar.resid # Test for stationarity if self.k_ar > 0 and self.enforce_stationarity: coefficient_matrices = ( ar_params.reshape( self.k_endog * self.k_ar, self.k_endog ).T ).reshape(self.k_endog, self.k_endog, self.k_ar).T stationary = is_invertible([1] + list(-coefficient_matrices)) if not stationary: raise ValueError('Non-stationary starting autoregressive' ' parameters found with `enforce_stationarity`' ' set to True.') # C. Run a VAR model on the residuals to get MA parameters ma_params = [] if self.k_ma > 0: mod_ma = var_model.VAR(endog) res_ma = mod_ma.fit(maxlags=self.k_ma, ic=None, trend='nc') ma_params = np.array(res_ma.params.T).ravel() # Test for invertibility if self.enforce_invertibility: coefficient_matrices = ( ma_params.reshape( self.k_endog * self.k_ma, self.k_endog ).T ).reshape(self.k_endog, self.k_endog, self.k_ma).T invertible = is_invertible([1] + list(-coefficient_matrices)) if not invertible: raise ValueError('Non-invertible starting moving-average' ' parameters found with `enforce_stationarity`' ' set to True.') # 1. Intercept terms if self.trend == 'c': params[self._params_trend] = trend_params # 2. AR terms params[self._params_ar] = ar_params # 3. MA terms params[self._params_ma] = ma_params # 4. Regression terms if self.mle_regression: params[self._params_regression] = exog_params.ravel() # 5. State covariance terms if self.error_cov_type == 'diagonal': params[self._params_state_cov] = res_ar.sigma_u.diagonal() elif self.error_cov_type == 'unstructured': cov_factor = np.linalg.cholesky(res_ar.sigma_u) params[self._params_state_cov] = ( cov_factor[self._idx_lower_state_cov].ravel()) # 5. Measurement error variance terms if self.measurement_error: if self.k_ma > 0: params[self._params_obs_cov] = res_ma.sigma_u.diagonal() else: params[self._params_obs_cov] = res_ar.sigma_u.diagonal() return params @property def param_names(self): param_names = [] # 1. Intercept terms if self.trend == 'c': param_names += [ 'const.%s' % self.endog_names[i] for i in range(self.k_endog) ] # 2. AR terms param_names += [ 'L%d.%s.%s' % (i+1, self.endog_names[k], self.endog_names[j]) for j in range(self.k_endog) for i in range(self.k_ar) for k in range(self.k_endog) ] # 3. MA terms param_names += [ 'L%d.e(%s).%s' % (i+1, self.endog_names[k], self.endog_names[j]) for j in range(self.k_endog) for i in range(self.k_ma) for k in range(self.k_endog) ] # 4. Regression terms param_names += [ 'beta.%s.%s' % (self.exog_names[j], self.endog_names[i]) for i in range(self.k_endog) for j in range(self.k_exog) ] # 5. State covariance terms if self.error_cov_type == 'diagonal': param_names += [ 'sigma2.%s' % self.endog_names[i] for i in range(self.k_endog) ] elif self.error_cov_type == 'unstructured': param_names += [ ('sqrt.var.%s' % self.endog_names[i] if i == j else 'sqrt.cov.%s.%s' % (self.endog_names[j], self.endog_names[i])) for i in range(self.k_endog) for j in range(i+1) ] # 5. Measurement error variance terms if self.measurement_error: param_names += [ 'measurement_variance.%s' % self.endog_names[i] for i in range(self.k_endog) ] return param_names def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evalation. Notes ----- Constrains the factor transition to be stationary and variances to be positive. """ unconstrained = np.array(unconstrained, ndmin=1) constrained = np.zeros(unconstrained.shape, dtype=unconstrained.dtype) # 1. Intercept terms: nothing to do constrained[self._params_trend] = unconstrained[self._params_trend] # 2. AR terms: optionally force to be stationary if self.k_ar > 0 and self.enforce_stationarity: # Create the state covariance matrix if self.error_cov_type == 'diagonal': state_cov = np.diag(unconstrained[self._params_state_cov]**2) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=unconstrained.dtype) state_cov_lower[self._idx_lower_state_cov] = ( unconstrained[self._params_state_cov]) state_cov = np.dot(state_cov_lower, state_cov_lower.T) # Transform the parameters coefficients = unconstrained[self._params_ar].reshape( self.k_endog, self.k_endog * self.k_ar) coefficient_matrices, variance = ( constrain_stationary_multivariate(coefficients, state_cov)) constrained[self._params_ar] = coefficient_matrices.ravel() else: constrained[self._params_ar] = unconstrained[self._params_ar] # 3. MA terms: optionally force to be invertible if self.k_ma > 0 and self.enforce_invertibility: # Transform the parameters, using an identity variance matrix state_cov = np.eye(self.k_endog, dtype=unconstrained.dtype) coefficients = unconstrained[self._params_ma].reshape( self.k_endog, self.k_endog * self.k_ma) coefficient_matrices, variance = ( constrain_stationary_multivariate(coefficients, state_cov)) constrained[self._params_ma] = coefficient_matrices.ravel() else: constrained[self._params_ma] = unconstrained[self._params_ma] # 4. Regression terms: nothing to do constrained[self._params_regression] = ( unconstrained[self._params_regression]) # 5. State covariance terms # If we have variances, force them to be positive if self.error_cov_type == 'diagonal': constrained[self._params_state_cov] = ( unconstrained[self._params_state_cov]**2) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': constrained[self._params_state_cov] = ( unconstrained[self._params_state_cov]) # 5. Measurement error variance terms if self.measurement_error: # Force these to be positive constrained[self._params_obs_cov] = ( unconstrained[self._params_obs_cov]**2) return constrained def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer. Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evalution, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. """ constrained = np.array(constrained, ndmin=1) unconstrained = np.zeros(constrained.shape, dtype=constrained.dtype) # 1. Intercept terms: nothing to do unconstrained[self._params_trend] = constrained[self._params_trend] # 2. AR terms: optionally were forced to be stationary if self.k_ar > 0 and self.enforce_stationarity: # Create the state covariance matrix if self.error_cov_type == 'diagonal': state_cov = np.diag(constrained[self._params_state_cov]) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=constrained.dtype) state_cov_lower[self._idx_lower_state_cov] = ( constrained[self._params_state_cov]) state_cov = np.dot(state_cov_lower, state_cov_lower.T) # Transform the parameters coefficients = constrained[self._params_ar].reshape( self.k_endog, self.k_endog * self.k_ar) unconstrained_matrices, variance = ( unconstrain_stationary_multivariate(coefficients, state_cov)) unconstrained[self._params_ar] = unconstrained_matrices.ravel() else: unconstrained[self._params_ar] = constrained[self._params_ar] # 3. MA terms: optionally were forced to be invertible if self.k_ma > 0 and self.enforce_invertibility: # Transform the parameters, using an identity variance matrix state_cov = np.eye(self.k_endog, dtype=constrained.dtype) coefficients = constrained[self._params_ma].reshape( self.k_endog, self.k_endog * self.k_ma) unconstrained_matrices, variance = ( unconstrain_stationary_multivariate(coefficients, state_cov)) unconstrained[self._params_ma] = unconstrained_matrices.ravel() else: unconstrained[self._params_ma] = constrained[self._params_ma] # 4. Regression terms: nothing to do unconstrained[self._params_regression] = ( constrained[self._params_regression]) # 5. State covariance terms # If we have variances, then these were forced to be positive if self.error_cov_type == 'diagonal': unconstrained[self._params_state_cov] = ( constrained[self._params_state_cov]**0.5) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': unconstrained[self._params_state_cov] = ( constrained[self._params_state_cov]) # 5. Measurement error variance terms if self.measurement_error: # These were forced to be positive unconstrained[self._params_obs_cov] = ( constrained[self._params_obs_cov]**0.5) return unconstrained def update(self, params, *args, **kwargs): params = super(VARMAX, self).update(params, *args, **kwargs) # 1. State intercept if self.mle_regression: exog_params = params[self._params_regression].reshape( self.k_endog, self.k_exog).T intercept = np.dot(self.exog, exog_params) if self.trend == 'c': intercept += params[self._params_trend] self.ssm[self._idx_state_intercept] = intercept.T elif self.trend == 'c': self.ssm[self._idx_state_intercept] = params[self._params_trend] # 2. Transition ar = params[self._params_ar].reshape( self.k_endog, self.k_endog * self.k_ar) ma = params[self._params_ma].reshape( self.k_endog, self.k_endog * self.k_ma) self.ssm[self._idx_transition] = np.c_[ar, ma] # 3. State covariance if self.error_cov_type == 'diagonal': self.ssm[self._idx_state_cov] = ( params[self._params_state_cov] ) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=params.dtype) state_cov_lower[self._idx_lower_state_cov] = ( params[self._params_state_cov]) self.ssm['state_cov'] = np.dot(state_cov_lower, state_cov_lower.T) # 4. Observation covariance if self.measurement_error: self.ssm[self._idx_obs_cov] = params[self._params_obs_cov]
def __init__(self, endog, exog=None, order=(1, 0), trend='c', error_cov_type='unstructured', measurement_error=False, enforce_stationarity=True, enforce_invertibility=True, **kwargs): # Model parameters self.error_cov_type = error_cov_type self.measurement_error = measurement_error self.enforce_stationarity = enforce_stationarity self.enforce_invertibility = enforce_invertibility # Save the given orders self.order = order self.trend = trend # Model orders self.k_ar = int(order[0]) self.k_ma = int(order[1]) self.k_trend = int(self.trend == 'c') # Check for valid model if trend not in ['c', 'nc']: raise ValueError('Invalid trend specification.') if error_cov_type not in ['diagonal', 'unstructured']: raise ValueError('Invalid error covariance matrix type' ' specification.') if self.k_ar == 0 and self.k_ma == 0: raise ValueError('Invalid VARMAX(p,q) specification; at least one' ' p,q must be greater than zero.') # Warn for VARMA model if self.k_ar > 0 and self.k_ma > 0: warn('Estimation of VARMA(p,q) models is not generically robust,' ' due especially to identification issues.') # Exogenous data self.k_exog = 0 if exog is not None: exog_is_using_pandas = _is_using_pandas(exog, None) if not exog_is_using_pandas: exog = np.asarray(exog) # Make sure we have 2-dimensional array if exog.ndim == 1: if not exog_is_using_pandas: exog = exog[:, None] else: exog = pd.DataFrame(exog) self.k_exog = exog.shape[1] # Note: at some point in the future might add state regression, as in # SARIMAX. self.mle_regression = self.k_exog > 0 # We need to have an array or pandas at this point if not _is_using_pandas(endog, None): endog = np.asanyarray(endog) # Model order # Used internally in various places _min_k_ar = max(self.k_ar, 1) self._k_order = _min_k_ar + self.k_ma # Number of states k_endog = endog.shape[1] k_posdef = k_endog k_states = k_endog * self._k_order # By default, initialize as stationary kwargs.setdefault('initialization', 'stationary') # By default, use LU decomposition kwargs.setdefault('inversion_method', INVERT_UNIVARIATE | SOLVE_LU) # Initialize the state space model super(VARMAX, self).__init__( endog, exog=exog, k_states=k_states, k_posdef=k_posdef, **kwargs ) # Initialize the parameters self.parameters = OrderedDict() self.parameters['trend'] = self.k_endog * self.k_trend self.parameters['ar'] = self.k_endog**2 * self.k_ar self.parameters['ma'] = self.k_endog**2 * self.k_ma self.parameters['regression'] = self.k_endog * self.k_exog if self.error_cov_type == 'diagonal': self.parameters['state_cov'] = self.k_endog # These parameters fill in a lower-triangular matrix which is then # dotted with itself to get a positive definite matrix. elif self.error_cov_type == 'unstructured': self.parameters['state_cov'] = ( int(self.k_endog * (self.k_endog + 1) / 2) ) self.parameters['obs_cov'] = self.k_endog * self.measurement_error self.k_params = sum(self.parameters.values()) # Initialize known elements of the state space matrices # If we have exog effects, then the state intercept needs to be # time-varying if self.k_exog > 0: self.ssm['state_intercept'] = np.zeros((self.k_states, self.nobs)) # The design matrix is just an identity for the first k_endog states idx = np.diag_indices(self.k_endog) self.ssm[('design',) + idx] = 1 # The transition matrix is described in four blocks, where the upper # left block is in companion form with the autoregressive coefficient # matrices (so it is shaped k_endog * k_ar x k_endog * k_ar) ... if self.k_ar > 0: idx = np.diag_indices((self.k_ar - 1) * self.k_endog) idx = idx[0] + self.k_endog, idx[1] self.ssm[('transition',) + idx] = 1 # ... and the lower right block is in companion form with zeros as the # coefficient matrices (it is shaped k_endog * k_ma x k_endog * k_ma). idx = np.diag_indices((self.k_ma - 1) * self.k_endog) idx = (idx[0] + (_min_k_ar + 1) * self.k_endog, idx[1] + _min_k_ar * self.k_endog) self.ssm[('transition',) + idx] = 1 # The selection matrix is described in two blocks, where the upper # block selects the all k_posdef errors in the first k_endog rows # (the upper block is shaped k_endog * k_ar x k) and the lower block # also selects all k_posdef errors in the first k_endog rows (the lower # block is shaped k_endog * k_ma x k). idx = np.diag_indices(self.k_endog) self.ssm[('selection',) + idx] = 1 idx = idx[0] + _min_k_ar * self.k_endog, idx[1] if self.k_ma > 0: self.ssm[('selection',) + idx] = 1 # Cache some indices if self.trend == 'c' and self.k_exog == 0: self._idx_state_intercept = np.s_['state_intercept', :k_endog] elif self.k_exog > 0: self._idx_state_intercept = np.s_['state_intercept', :k_endog, :] if self.k_ar > 0: self._idx_transition = np.s_['transition', :k_endog, :] else: self._idx_transition = np.s_['transition', :k_endog, k_endog:] if self.error_cov_type == 'diagonal': self._idx_state_cov = ( ('state_cov',) + np.diag_indices(self.k_endog)) elif self.error_cov_type == 'unstructured': self._idx_lower_state_cov = np.tril_indices(self.k_endog) if self.measurement_error: self._idx_obs_cov = ('obs_cov',) + np.diag_indices(self.k_endog) # Cache some slices def _slice(key, offset): length = self.parameters[key] param_slice = np.s_[offset:offset + length] offset += length return param_slice, offset offset = 0 self._params_trend, offset = _slice('trend', offset) self._params_ar, offset = _slice('ar', offset) self._params_ma, offset = _slice('ma', offset) self._params_regression, offset = _slice('regression', offset) self._params_state_cov, offset = _slice('state_cov', offset) self._params_obs_cov, offset = _slice('obs_cov', offset)