def setup_class(cls): from statsmodels.datasets.stackloss import load cls.data = load(as_pandas=False) cls.data.exog = sm.add_constant(cls.data.exog, prepend=False) model = RLM(cls.data.endog, cls.data.exog, M=norms.HuberT()) results = model.fit(scale_est=HuberScale()) h2 = model.fit(cov="H2", scale_est=HuberScale()).bcov_scaled h3 = model.fit(cov="H3", scale_est=HuberScale()).bcov_scaled cls.res1 = results cls.res1.h2 = h2 cls.res1.h3 = h3
def setup_class(cls): from statsmodels.datasets.stackloss import load cls.data = load(as_pandas=False) # class attributes for subclasses cls.data.exog = sm.add_constant(cls.data.exog, prepend=False) # Test precisions cls.decimal_standarderrors = DECIMAL_1 cls.decimal_scale = DECIMAL_3 model = RLM(cls.data.endog, cls.data.exog, M=norms.HuberT()) results = model.fit(conv='sresid') h2 = model.fit(cov="H2").bcov_scaled h3 = model.fit(cov="H3").bcov_scaled cls.res1 = results cls.res1.h2 = h2 cls.res1.h3 = h3
def setup_class(cls): from statsmodels.datasets.stackloss import load cls.data = load() cls.data.exog = sm.add_constant(cls.data.exog, prepend=False) results = RLM(cls.data.endog, cls.data.exog,\ M=sm.robust.norms.HuberT()).fit(scale_est=\ sm.robust.scale.HuberScale()) h2 = RLM(cls.data.endog, cls.data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H2", scale_est=sm.robust.scale.HuberScale()).bcov_scaled h3 = RLM(cls.data.endog, cls.data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H3", scale_est=sm.robust.scale.HuberScale()).bcov_scaled cls.res1 = results cls.res1.h2 = h2 cls.res1.h3 = h3
def setup_class(cls): from statsmodels.datasets.stackloss import load cls.data = load() # class attributes for subclasses cls.data.exog = sm.add_constant(cls.data.exog, prepend=False) # Test precisions cls.decimal_standarderrors = DECIMAL_1 cls.decimal_scale = DECIMAL_3 results = RLM(cls.data.endog, cls.data.exog,\ M=sm.robust.norms.HuberT()).fit() # default M h2 = RLM(cls.data.endog, cls.data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H2").bcov_scaled h3 = RLM(cls.data.endog, cls.data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H3").bcov_scaled cls.res1 = results cls.res1.h2 = h2 cls.res1.h3 = h3
class TestRlmHuber(CheckRlmResultsMixin): from statsmodels.datasets.stackloss import load data = load() data.exog = sm.add_constant(data.exog, prepend=False) def __init__(self): results = RLM(self.data.endog, self.data.exog,\ M=sm.robust.norms.HuberT()).fit(scale_est=\ sm.robust.scale.HuberScale()) h2 = RLM(self.data.endog, self.data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H2", scale_est=sm.robust.scale.HuberScale()).bcov_scaled h3 = RLM(self.data.endog, self.data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H3", scale_est=sm.robust.scale.HuberScale()).bcov_scaled self.res1 = results self.res1.h2 = h2 self.res1.h3 = h3 def setup(self): from .results.results_rlm import HuberHuber self.res2 = HuberHuber()
def setup_class(cls): data = stackloss.load(as_pandas=False) data.exog = add_constant(data.exog) cls.res1 = OLS(data.endog, data.exog).fit() cls.res2 = RegressionResults()
# results_huber = model_huber.fit(scale_est="stand_mad", update_scale=False) # model_ramsaysE = RLM(endog, exog, M=norms.RamsayE()) # results_ramsaysE = model_ramsaysE.fit(update_scale=False) # model_andrewWave = RLM(endog, exog, M=norms.AndrewWave()) # results_andrewWave = model_andrewWave.fit(update_scale=False) # model_hampel = RLM(endog, exog, M=norms.Hampel(a=1.7,b=3.4,c=8.5)) # convergence problems with scale changed, not with 2,4,8 though? # results_hampel = model_hampel.fit(update_scale=False) ####################### ### Stack Loss Data ### ####################### from statsmodels.datasets.stackloss import load data = load() data.exog = sm.add_constant(data.exog) ############# ### Huber ### ############# # m1_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber1 = m1_Huber.fit() # m2_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber2 = m2_Huber.fit(cov="H2") # m3_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber3 = m3_Huber.fit(cov="H3") ############## ### Hampel ### ############## # m1_Hampel = RLM(data.endog, data.exog, M=norms.Hampel()) # results_Hampel1 = m1_Hampel.fit()
def __init__(self): data = stackloss.load() data.exog = add_constant(data.exog) self.res1 = OLS(data.endog, data.exog).fit() self.res2 = RegressionResults()
# results_ols = model_ols.fit() # model_ramsaysE = RLM(endog, exog, M=norms.RamsayE()) # results_ramsaysE = model_ramsaysE.fit(update_scale=False) # model_andrewWave = RLM(endog, exog, M=norms.AndrewWave()) # results_andrewWave = model_andrewWave.fit(update_scale=False) # model_hampel = RLM(endog, exog, M=norms.Hampel(a=1.7,b=3.4,c=8.5)) # convergence problems with scale changed, not with 2,4,8 though? # results_hampel = model_hampel.fit(update_scale=False) ####################### ### Stack Loss Data ### ####################### from statsmodels.datasets.stackloss import load data = load(as_pandas=False) data.exog = sm.add_constant(data.exog) ############# ### Huber ### ############# # m1_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber1 = m1_Huber.fit() # m2_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber2 = m2_Huber.fit(cov="H2") # m3_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber3 = m3_Huber.fit(cov="H3") ############## ### Hampel ### ############## # m1_Hampel = RLM(data.endog, data.exog, M=norms.Hampel()) # results_Hampel1 = m1_Hampel.fit()
Created on Sun Mar 27 14:36:40 2011 """ import numpy as np import statsmodels.api as sm RLM = sm.RLM DECIMAL_4 = 4 DECIMAL_3 = 3 DECIMAL_2 = 2 DECIMAL_1 = 1 from statsmodels.datasets.stackloss import load data = load() # class attributes for subclasses data.exog = sm.add_constant(data.exog) decimal_standarderrors = DECIMAL_1 decimal_scale = DECIMAL_3 results = RLM(data.endog, data.exog,\ M=sm.robust.norms.HuberT()).fit() # default M h2 = RLM(data.endog, data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H2").bcov_scaled h3 = RLM(data.endog, data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H3").bcov_scaled from statsmodels.robust.tests.results.results_rlm import Huber res2 = Huber()
""" from __future__ import print_function import numpy as np import statsmodels.api as sm RLM = sm.RLM DECIMAL_4 = 4 DECIMAL_3 = 3 DECIMAL_2 = 2 DECIMAL_1 = 1 from statsmodels.datasets.stackloss import load data = load(as_pandas=False) # class attributes for subclasses data.exog = sm.add_constant(data.exog, prepend=False) decimal_standarderrors = DECIMAL_1 decimal_scale = DECIMAL_3 results = RLM(data.endog, data.exog,\ M=sm.robust.norms.HuberT()).fit() # default M h2 = RLM(data.endog, data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H2").bcov_scaled h3 = RLM(data.endog, data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H3").bcov_scaled from statsmodels.robust.tests.results.results_rlm import Huber res2 = Huber()
def load_stackloss(): from statsmodels.datasets.stackloss import load data = load() data.endog = np.asarray(data.endog) data.exog = np.asarray(data.exog) return data
Created on Sun Mar 27 14:36:40 2011 """ from __future__ import print_function import numpy as np import statsmodels.api as sm RLM = sm.RLM DECIMAL_4 = 4 DECIMAL_3 = 3 DECIMAL_2 = 2 DECIMAL_1 = 1 from statsmodels.datasets.stackloss import load data = load(as_pandas=False) # class attributes for subclasses data.exog = sm.add_constant(data.exog, prepend=False) decimal_standarderrors = DECIMAL_1 decimal_scale = DECIMAL_3 results = RLM(data.endog, data.exog,\ M=sm.robust.norms.HuberT()).fit() # default M h2 = RLM(data.endog, data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H2").bcov_scaled h3 = RLM(data.endog, data.exog,\ M=sm.robust.norms.HuberT()).fit(cov="H3").bcov_scaled from statsmodels.robust.tests.results.results_rlm import Huber res2 = Huber()