Example #1
0
    def get_sample_size(self, beta=0.1):
        """
        Calculate required sample size per group to obtain provided beta.

        Parameters
        ----------
        beta : float
            Type 2 error rate.

        Returns
        -------
        n : int
            sample size per group.
        """

        es = sms.proportion_effectsize(self.prop_null, self.prop_alt)

        if self.alt_hypothesis == 'two_tailed':
            n = tt_ind_solve_power(
                effect_size=es,
                alpha=self.alpha,
                power=1 - beta,
                alternative='two-sided',
            )
        else:
            n = tt_ind_solve_power(
                effect_size=es,
                alpha=self.alpha,
                power=1 - beta,
                alternative='smaller')

        return int(np.round(n, 0))
def test_calculate_required_sample_size_mean(
        global_variables_for_calculate_required_sample_size):
    """
    Sample size should be calculated appropriately using the statsmodels package when measuring a mean value in the
    experiment (using a t-test).
    """

    effect_size = set_up_experiment._calculate_effect_size_means(
        baseline_mean=pytest.baseline_metric_value,
        new_mean=pytest.new_metric_value,
        standard_deviation=pytest.standard_deviation)

    expected_required_sample_size = stats_power.tt_ind_solve_power(
        effect_size=effect_size,
        alpha=pytest.significance_level,
        power=pytest.power,
        alternative=pytest.alternative_hypothesis,
    )

    actual_required_sample_size = set_up_experiment.calculate_required_sample_size(
        baseline_metric_value=pytest.baseline_metric_value,
        new_metric_value=pytest.new_metric_value,
        measurement_type='mean',
        alternative_hypothesis=pytest.alternative_hypothesis,
        power=pytest.power,
        significance_level=pytest.significance_level,
        standard_deviation=pytest.standard_deviation,
    )

    assert actual_required_sample_size == int(expected_required_sample_size)
def generate_violion_plots(plot_col, group_col, group_order, ax):
    
    boxes = []
    mus = []
    stds = []
    g_order = []
    for group in group_order:
        mask = group_col == group
        tmp = plot_col[mask].dropna()
        if len(tmp) > 2:
            g_order.append(group)
            boxes.append(tmp.copy().values)
            mus.append(plot_col[mask].mean())
            stds.append(plot_col[mask].std())
        
    if len(boxes) == 2:
        ef = abs(np.diff(mus))/(np.sum(stds))
        ratio = len(boxes[1])/len(boxes[0])
        n0 = tt_ind_solve_power(effect_size=ef, alpha = alpha, power = power, ratio = ratio)
        sizes = [str(int(n0)), str(int(n0*ratio))]
        _, pval = ttest_ind(*boxes)
    else:
        sizes = ['']*len(boxes)
        _, pval = kruskal(*boxes)
    
    labels = ['%s n=%i/%s' % (t, len(b), n) for t, b, n in zip(g_order, boxes, sizes)]
    violinplot(boxes, ax = ax, labels = labels)
    return pval, ax
Example #4
0
def mean_ttest_analyzer(sample_1: np.array,
                        sample_2: np.array,
                        alpha=0.05,
                        return_abs_diff=True):
    """
    Make a quick statistical assessment for the mean of 2 different samples (hypothesis test based)
    :param dataframe: original dataframe in a subject level
    :param group_col: the name of the group column
    :param category_col: the name of the category_col column
    :returns group_share_per_category_df: df containing the % share each category has by group
    """
    seed(666)  # ensure results reproducibility
    _, pvalue = ttest_ind(a=sample_2, b=sample_1, nan_policy='omit')
    # power parameters
    std_diff = np.sqrt(np.nanvar(sample_2) + np.nanvar(sample_1))
    abs_mean_diff = np.nanmean(sample_2) - np.nanmean(sample_1)
    effect_size = abs_mean_diff / std_diff
    treatment_size = (~np.isnan(sample_2)).sum()
    size_ratio = (~np.isnan(sample_1)).sum() / treatment_size
    power = tt_ind_solve_power(effect_size=effect_size,
                               alpha=alpha,
                               power=None,
                               ratio=size_ratio,
                               alternative='two-sided',
                               nobs1=treatment_size)
    if return_abs_diff:
        return pvalue, power, abs_mean_diff
    else:
        return pvalue, power
Example #5
0
    def run(self, data, knobs):

        if not super(self.__class__, self).run(data, knobs):
            error("Aborting analysis.")
            return

        # pooled_std = sqrt((var(self.y1) + var(self.y2)) / 2)
        # effect_size = self.mean_diff / pooled_std

        sample_size = len(self.y1)

        power = tt_ind_solve_power(effect_size=self.effect_size,
                                   nobs1=sample_size,
                                   alpha=self.alpha,
                                   alternative=self.alternative)

        result = dict()
        result["effect_size"] = self.effect_size
        result["sample_size"] = sample_size
        result["alpha"] = self.alpha
        result["power"] = power
        # result["mean_diff"] = self.mean_diff
        # result["pooled_std"] = pooled_std

        return result
Example #6
0
    def run(self, data, knobs):

        if not super(self.__class__, self).run(data, knobs):
            error("Aborting analysis.")
            return

        if not self.effect_size:
            if not self.mean_diff:
                raise Exception(
                    "You cannot leave both mean_diff and effect_size paramaters empty"
                )
            pooled_std = sqrt((var(self.y1) + var(self.y2)) / 2)
            effect_size = self.mean_diff / pooled_std
        else:
            effect_size = self.effect_size

        sample_size = tt_ind_solve_power(effect_size=effect_size,
                                         nobs1=None,
                                         alpha=self.alpha,
                                         power=self.power,
                                         alternative=self.alternative)

        result = dict()
        result["effect_size"] = effect_size
        result["sample_size"] = floor(sample_size)
        result["alpha"] = self.alpha
        result["power"] = self.power
        # result["mean_diff"] = self.mean_diff
        # result["pooled_std"] = pooled_std

        return result
Example #7
0
def samples_per_branch_calculator(u_hat, mde=0.05, alpha=0.05, power=0.95):
    var_hat = u_hat * (1 - u_hat)
    standardized_effect_size = (u_hat - (u_hat * (1 + mde))) / np.sqrt(var_hat)
    sample_size = tt_ind_solve_power(effect_size=standardized_effect_size,
                                     alpha=alpha,
                                     power=power)
    return sample_size
Example #8
0
def determine_sample_size(features):
    control_rate = float(features['conversion_rate']) / 100
    test_rate = control_rate + control_rate * float(
        features['detectable_difference']) / 100
    num_variants = int(features['number_of_variants'])
    power = float(features['power'])
    alpha = float(features['alpha']) / (num_variants - 1)
    proportion_control = float(features['control_proportion'])
    ratio = ((100 - proportion_control) /
             (num_variants - 1)) / proportion_control
    effect_size = cohens_h(control_rate, test_rate)

    sample_size_control = int(
        tt_ind_solve_power(effect_size=effect_size,
                           nobs1=None,
                           alpha=alpha,
                           power=power,
                           ratio=ratio))

    try:
        samples_per_day = float(features['samples_per_day'])
        days_to_run_estimate = round(sample_size_control / samples_per_day)
    except:
        samples_per_day = 'Unknown'
        days_to_run_estimate = 'Unknown'

    return sample_size_control, days_to_run_estimate
Example #9
0
    def solve_absolute_mde(self):
        """Ignoring defined absolute effect size, solve for absolute Minimal
        Detectable Effect given other defined experimental constraints. We leverage
        the StatsModels functionality, but need to solve for the "absolute" MDE. The
        StatsModel function returns the normalized Cohen's d effect size:

        d = absolute_effect_size / standard_deviation,

        Therefore, we solve for d * standard_deviation.

        Returns
        -------
        min_absolute_effect : float (0, 1)
            Absolute MDE for experiment
        """
        test_type = self._alternative_direction()
        e = tt_ind_solve_power(
            nobs1=np.ceil(self.sample_size * self.test_split)
            ,power=(1 - self.beta)
            ,alpha=self.alpha
            ,ratio=(1 - self.test_split) / self.test_split
            ,alternative=test_type
        )
        min_absolute_effect = e * self.sigma

        if self.absolute_effect < 0 and min_absolute_effect > 0:
            min_absolute_effect *= -1

        return min_absolute_effect
Example #10
0
def samples_per_branch_calculator(p_hat, mde, alpha, power):
    """
    Classical sample size calculation for ttest
    """
    u_hat = p_hat.values.dot(p_hat.distribution)
    sigma_hat = sum([p_hat.distribution[i] * ((p_hat.values[i] - u_hat) ** 2) for i in range(len(p_hat.distribution))])
    standardized_effect_size = (u_hat - (u_hat * (1 + mde))) / np.sqrt(sigma_hat)
    sample_size = tt_ind_solve_power(effect_size=standardized_effect_size, alpha=alpha, power=power)
    return sample_size




    
Example #11
0
def get_effect_size_ncp(data1, data2):
    mean_difference = data1.mean - data2.mean
    num = ((data1.n - 1)*(data1.sd**(2))) + ((data2.n - 1)*(data2.sd**(2)))
    den = data1.n + data2.n - 2
    sd = math.sqrt(num/den)  # pooled sd
    es = abs(mean_difference / sd)
    nobs_ratio = data1.n / data2.n

    # error check front-side power calculation with backend power calculation
    power = tt_ind_solve_power(effect_size=es, nobs1=data1.n, alpha=0.05, ratio=nobs_ratio, alternative='larger')
    print("POWER ",power)

    p = 1./ (1./data1.n  + 1./data2.n)  # from statsmodels library code
    ncp = es*math.sqrt(p)
    return round(es, DEC), ncp
Example #12
0
def plot_KvsVs30(bins, cut, snr, vs30_path, full_file_path,savepath):  
    fullfile = pd.read_csv(full_file_path)
    
    kappa = fullfile[' tstar(s) '].values
    vs30 = pd.read_csv(vs30_path).values
    name = fullfile['Name'].values
    vs30_1d = np.reshape(vs30,-1)
    lnvs30 = np.log(vs30_1d)
    print(lnvs30)
    Pearson_R,P_val = pearsonr(kappa,vs30_1d)
    Power = tt_ind_solve_power(effect_size=Pearson_R,nobs1=30, alpha=0.05)
    Pearson_R = float(Pearson_R)
    P_val = float(P_val)
    Power = float(Power)
      #  text = 'Pearson R = ' + r + '   P-val = ' + p_val +'   Power = ' + power + '       .'
    textstr = '\n'.join((
    r'$Pearson R:%.4f$' % (Pearson_R, ),
    r'$P val:%.4f$' % (P_val, ),
    r'$Power:%.4f$' % (Power, )))
    ##########################
    fig = plt.figure(figsize = (10,10))
    #    plt.axes().set_xscale("log")
    #    plt.axes().set_yscale("log")
    plt.ylabel('ln(Vs30) (m/s)', fontsize = 16)
    plt.xlabel('Kappa (s)', fontsize = 16)
    #plt.xlim(0.5,50)
    #plt.ylim(10e-6,3)
    plt.minorticks_on
    plt.grid(True, which='both')
    plt.tick_params(axis='both', which='major', labelsize=15)
    plt.tick_params(axis='both', which='both', length = 5, width = 1)
    plt.title('Kappa vs Vs30 ' + 'SNR '+np.str(snr)+' '+np.str(bins)+' bins '+np.str(cut)+' sec cut', fontsize = 16)
    
    
    
    # these are matplotlib.patch.Patch properties
       
    # place a text box in upper left in axes coords
    plt.text(0.02, 5.25, textstr,  fontsize=14, verticalalignment='top',)
    
    plt.scatter(kappa, lnvs30)
    for i in range(30):
        if i == 1 or i == 10 or i ==7:
            alignment = 'right'
        else:
            alignment = 'left'
        plt.annotate(name[i], (kappa[i], lnvs30[i]), ha=alignment, alpha =.9,rotation=0)
    plt.savefig(savepath)
Example #13
0
def make_overall_stats_df(df,
                          arm_stats=None,
                          assume_t=False,
                          effect_size=None):
    step_sizes = df['num_steps'].unique()
    rows = []
    for num_steps in step_sizes:
        cur_row = {}
        df_for_num_steps = df[df['num_steps'] == num_steps]
        cur_row['num_steps'] = num_steps
        num_replications = len(df_for_num_steps)
        cur_row['num_reps'] = num_replications
        num_rejected = np.sum(df_for_num_steps['pvalue'] < .05)
        cur_row['proportion_null_rejected'] = num_rejected / num_replications
        cur_row['avg_ratio'] = np.mean(df_for_num_steps['ratio'])
        cur_row['mean_1'] = np.mean(df_for_num_steps['mean_1'])
        cur_row['mean_2'] = np.mean(df_for_num_steps['mean_2'])
        cur_row['min_cond_1'] = df_for_num_steps.min()['mean_1']
        cur_row['min_cond_2'] = df_for_num_steps.min()['mean_2']
        cur_row['max_cond_1'] = df_for_num_steps.max()['mean_1']
        cur_row['max_cond_2'] = df_for_num_steps.max()['mean_2']
        if assume_t and effect_size != None:
            expected_power = smp.tt_ind_solve_power(effect_size, num_steps / 2,
                                                    0.05, None, 1)
            cur_row['expected_power'] = expected_power
        avg_es = np.mean(df_for_num_steps['actual_es'])
        cur_row['avg_es'] = avg_es
        count_significant_cases = np.count_nonzero(
            df_for_num_steps['pvalue'] < .05)
        count_sign_errors_given_significant = np.count_nonzero(
            (df_for_num_steps['pvalue'] < .05)
            & (df_for_num_steps['mean_1'] < df_for_num_steps['mean_2']))
        count_sign_errors_overall = np.count_nonzero(
            df_for_num_steps['mean_1'] < df_for_num_steps['mean_2'])
        if count_significant_cases != 0:
            cur_row[
                'type_s_errors'] = count_sign_errors_given_significant / count_significant_cases
        else:
            cur_row['type_s_errors'] = 0
        cur_row[
            'overall_prop_sign_reversed'] = count_sign_errors_overall / num_replications
        rows.append(cur_row)

    # Make dataframe
    df = pd.DataFrame(rows)

    return df
Example #14
0
def sample_power_ttest(p1,
                       p2,
                       sd_diff,
                       alpha=0.05,
                       power=0.8,
                       ratio=1,
                       alternative='two-sided'):
    mean_diff = abs(p2 - p1)
    std_effect_size = np.divide(mean_diff, sd_diff)
    n = tt_ind_solve_power(
        effect_size=std_effect_size,
        alpha=alpha,
        power=power,
        ratio=ratio,
        alternative=alternative
    )  # Potential improvement: make this able to handle one-sided tests
    return np.array(n).round()
Example #15
0
def hypothesis_test_one(cleaned_data, alpha=0.5):
    """
    Describe the purpose of your hypothesis test in the docstring
    These functions should be able to test different levels of alpha for the
    hypothesis test.If a value of alpha is entered that is outside of the
    acceptable range, an error should be raised.

    :param alpha: the critical value of choice
    :param cleaned_data:
    :return:
    """
    comparison_groups = create_sample_dists(cleaned_data,
                                            y_var='average_covered_charges')

    metro_sample = comparison_groups[0]
    non_metro_sample = comparison_groups[1]

    p_val = st.ttest_ind(metro_sample, non_metro_sample, equal_var=False)[1]
    coh_d = abs(cohen_d(metro_sample, non_metro_sample))
    nobs1 = len(non_metro_sample)
    ratio = len(metro_sample)/nobs1
    power = pw.tt_ind_solve_power(effect_size=coh_d, nobs1=nobs1, alpha=alpha,
                                  power=None, ratio=ratio,
                                  alternative='two-sided')

    status = compare_pval_alpha(p_val, alpha)
    assertion = ''
    if status == 'Fail to reject':
        assertion = 'cannot'
    else:
        assertion = "can"

    print(f'Based on the p value of {p_val} and our aplha of {alpha} \
          we {status.lower()} the null hypothesis.'
          f'\n Due to these results, we  {assertion} state that there \
          is a difference in charges between Hospitals in Metro and\
          Non-Metro Areas')

    if assertion == 'can':
        print(f"with an effect size, cohen's d, of {str(coh_d)} and \
              power of {power}.")
    else:
        print(".")

    return status
Example #16
0
def nobs(estimated=None, impressive=None):
    """
    Given the estimated and impressive figures,
    conduct a power calculation and return the
    number of required observations.

    Arguments:
    - `estimated`: int
    - `impressive`: int

    Return: int
    Exceptions: None
    """
    estimated, impressive = float(estimated), float(impressive)
    if abs(estimated/impressive) > 1:
        effect_size = abs(estimated/impressive)
    else:
        effect_size = abs(impressive/estimated)
    num = tt_ind_solve_power(effect_size=effect_size, alpha=0.05, power=0.8, nobs1=None)
    return int(num) * 2
Example #17
0
    def solve_sample_size(self):
        """Ignoring defined sample size, solves for sample size given other defined
        experimental constraints. This method utilizes the StatsModels functionality
        `solve_power`.

        Returns
        -------
        sample_size : int > 0
            Sample size required to run experiment with other constraints
        """
        e = self.normalized_effect_size()
        test_type = self._alternative_direction()
        n_treat = tt_ind_solve_power(
            effect_size=e
            ,power=(1 - self.beta)
            ,alpha=self.alpha
            ,ratio=(1 - self.test_split) / self.test_split
            ,alternative=test_type
        )
        return int(np.ceil(n_treat / self.test_split))
Example #18
0
    def solve_test_split(self):
        """Ignoring defined test split, solve for maximum test split.

        Returns
        -------
        max_test_split : float (0, 1)
            Maximum test split for experiment
        """
        e = self.normalized_effect_size()
        test_type = self._alternative_direction()
        ratio = tt_ind_solve_power(
            effect_size=e
            ,nobs1=np.ceil(self.sample_size * self.test_split)
            ,power=(1 - self.beta)
            ,alpha=self.alpha
            ,ratio=None
            ,alternative=test_type
        )
        max_test_split = 1./(ratio + 1)
        return max_test_split
Example #19
0
    def solve_power(self):
        """Ignoring defined beta (Type II error), solve for statistical power given
        other defined experimental constraints. This method utilized the StatsModels
        functionality `solve_power`.

        Returns
        -------
        power : float (0, 1)
            Statistical power of experiment
        """
        e = self.normalized_effect_size()
        test_type = self._alternative_direction()
        power = tt_ind_solve_power(
            effect_size=e
            ,nobs1=np.ceil(self.sample_size * self.test_split)
            ,alpha=self.alpha
            ,ratio=(1 - self.test_split) / self.test_split
            ,alternative=test_type
        )
        return power
Example #20
0
def calc_t_sample_size(
        baseline_average: np.float64,
        baseline_stdev: np.float64,
        expected_uplift_percentage: np.float64,
        power_percentage: np.float64 = 80,
        confidence_level_percentage: np.float64 = 95) -> np.float64:
    """Calculates the minimum sample size for A/B test for numeric KPI.

  Estimates the minimum required sample size for either a Test or a Control
  group in an A/B test when the KPI is a numeric variable such as revenue,
  number of conversions, etc.

  Args:
    baseline_average: Average value of the baseline KPI. E.g. avarege reveue per
      user.
    baseline_stdev: Standard deviation value of the baseline KPI. E.g. standard
      deviation of the revenue per user.
    expected_uplift_percentage: Expected uplift of the media experiment on the
      baseline average as a percentage. E.g. 10 for 10% uplift.
    power_percentage: Statistical power of the T-test as a percentage.
    confidence_level_percentage: Statistical confidence level of the T-test as a
      percentage.

  Returns:
    Estimated minimum sample size required for either a Test or a Control group
      in the A/B test.
  """
    expected_kpi = baseline_average * (100 + expected_uplift_percentage) / 100
    uplift_kpi = expected_kpi - baseline_average
    effect_size = uplift_kpi / baseline_stdev
    stat_alpha = (100 - confidence_level_percentage) / 100
    stat_power = power_percentage / 100

    return round(
        power.tt_ind_solve_power(effect_size=effect_size,
                                 nobs1=None,
                                 alpha=stat_alpha,
                                 power=stat_power))
Example #21
0
def ttest(control, treatment, alpha=0.05):
    """calculates the ttest pvalue, the percentage lift and the test power based on a pre set alpha
    # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
    # https://www.statsmodels.org/stable/generated/statsmodels.stats.power.tt_ind_solve_power.html"""
    # random seed to ensure results reproducibility
    seed(666)
    # p_value
    stat, p = ttest_ind(a=treatment, b=control, nan_policy='omit')
    # mean lift
    mean_diff = np.nanmean(treatment) - np.nanmean(control)
    #lift=(mean_diff/np.nanmean(control))*100.0
    # power parameters
    std_diff = np.sqrt(np.nanvar(treatment) + np.nanvar(control))
    effect_size = mean_diff / std_diff
    treatment_size = (~np.isnan(treatment)).sum()
    size_ratio = (~np.isnan(control)).sum() / treatment_size
    power = tt_ind_solve_power(effect_size=effect_size,
                               alpha=alpha,
                               power=None,
                               ratio=size_ratio,
                               alternative='two-sided',
                               nobs1=treatment_size)
    return p, mean_diff, power
Example #22
0
def nobs(estimated=None, impressive=None):
    """
    Given the estimated and impressive figures,
    conduct a power calculation and return the
    number of required observations.

    Arguments:
    - `estimated`: int
    - `impressive`: int

    Return: int
    Exceptions: None
    """
    estimated, impressive = float(estimated), float(impressive)
    if abs(estimated / impressive) > 1:
        effect_size = abs(estimated / impressive)
    else:
        effect_size = abs(impressive / estimated)
    num = tt_ind_solve_power(effect_size=effect_size,
                             alpha=0.05,
                             power=0.8,
                             nobs1=None)
    return int(num) * 2
Example #23
0
def hypothesis_test_two(cleaned_data, alpha=0.5):
    comparison_groups = create_sample_dists(cleaned_data,
                                            y_var='out_of_pocket')
    ###
    # Main chunk of code using t-tests or z-tests, effect size, power, etc
    metro_sample = comparison_groups[0]
    non_metro_sample = comparison_groups[1]
    p_val = st.ttest_ind(metro_sample, non_metro_sample, equal_var=False)[1]
    coh_d = abs(cohen_d(metro_sample, non_metro_sample))
    nobs1 = len(non_metro_sample)
    ratio = len(metro_sample)/nobs1
    power = pw.tt_ind_solve_power(effect_size=coh_d, nobs1=nobs1, alpha=alpha,
                                  power=None, ratio=ratio,
                                  alternative='two-sided')
    ###
    # starter code for return statement and printed results
    status = compare_pval_alpha(p_val, alpha)
    assertion = ''
    if status == 'Fail to reject':
        assertion = 'cannot'
    else:
        assertion = "can"
        # calculations for effect size, power, etc here as well

    print(f'Based on the p value of {p_val} and our aplha of {alpha} we \
         {status.lower()} the null hypothesis.'
          f'\n Due to these results, we  {assertion} state that \
          there is a difference in out-of-pocket cost for patients \
          using Hospitals in Metro vs. Non-Metro Areas')

    if assertion == 'can':
        print(f"with an effect size, cohen's d, of {str(coh_d)} and\
              power of {power}.")
    else:
        print(".")

    return status
Example #24
0
def t_test_with_power_comp(x1,
                           x2,
                           alternative='two-sided',
                           alpha=0.05,
                           power=0.8):
    """
    Independent (as contrasted with Paired) t-test with power calculation based on n_obs; effect size based
    on estimate from input.
    """
    import statsmodels.stats.power as smpwr
    import statsmodels.api as sm
    import numpy as np
    import matplotlib.pyplot as plt

    t_stat, pvalue, degrees_of_freedom = sm.stats.ttest_ind(
        x1=x1, x2=x2, alternative=alternative)

    print(
        "T: {t_stat}, p-value: {pvalue}, degrees of freedom: {degrees_of_freedom},"
        " n_obs_1 = {n_obs_1}, n_obs_2 = {n_obs_2}".format(
            t_stat=t_stat,
            degrees_of_freedom=degrees_of_freedom,
            pvalue=pvalue,
            n_obs_1=len(x1),
            n_obs_2=len(x2)))

    # Power calculation
    pooled_standard_dev_empirical = np.sqrt(np.mean([np.std(x1), np.std(x2)]))

    mean_diff_empirical = abs(np.mean(x1) - np.mean(x2))

    effect_size_empirical = mean_diff_empirical / pooled_standard_dev_empirical

    print(
        "Empirical pooled stdev: {:.2f}".format(pooled_standard_dev_empirical))
    print("Mean diff empirical: {:.2f}\neffect size empirical: {:.2f}".format(
        mean_diff_empirical, effect_size_empirical))

    # Empirical power needed

    nobs1 = smpwr.tt_ind_solve_power(
        effect_size=effect_size_empirical,
        nobs1=None,
        alpha=alpha,
        power=power,
        alternative=alternative,
    )

    print(
        "With alpha {alpha}, power {power}, need ≈ {nobs1:.0f} observations of each type to achieve significance"
        .format(alpha=alpha, power=power, nobs1=nobs1))

    # Power vs. nobs

    smpwr.TTestIndPower().plot_power(dep_var='nobs',
                                     nobs=np.arange(2, 10),
                                     effect_size=[effect_size_empirical],
                                     alternative=alternative,
                                     alpha=alpha)

    plt.show()
Example #25
0
def solve(eff):
    nobs = tt_ind_solve_power(effect_size=eff, alpha=0.05, power=0.8, nobs1=None)
    return int(nobs*2)
Example #26
0
def solve(eff):
    nobs = tt_ind_solve_power(effect_size=eff,
                              alpha=0.05,
                              power=0.8,
                              nobs1=None)
    return int(nobs * 2)
alpha = 0.05  # significance level (probability of getting false positive)
# power = 1 - beta where beta = (probability of getting false negative). Typical
# beta = 0.2 to 0.4. So power = 0.8 to 0.6
power = 0.6

#######End - Variables to be edited by user #######
###################################################

# effect_size = difference between means divided by standard dev. Should be >0
# eg. 10% change in freq on an initial value of 50Hz = 5Hz. Say, std dev. = 10Hz
# then effect size = 5/10 = 0.5
effect_size = float(abs(diff_means)) / float(stddev)

print "====================================================="
now = datetime.datetime.now()
print "Starting analysis at:", now.strftime("%m-%d-%Y %H:%M")
print "====================================================="
print " "
print "diff_means =", diff_means
print "stddev = ", stddev
print "effect_size =", effect_size
print "alpha =", alpha
print "power =", power
print " "
print "Observations needed =", round(
    smp.tt_ind_solve_power(effect_size=effect_size, nobs1=None, alpha=alpha, power=power)
)
print "Observations needed =", round(
    smp.zt_ind_solve_power(effect_size=effect_size, nobs1=None, alpha=alpha, power=power)
)
# In[94]:

# we'll use this for the next 2 steps
from statsmodels.stats.power import tt_ind_solve_power

# In[95]:

# what is the power of our current experiment?
# e.g. how likely is it that correctly decided that B is better than A
#   given the observed effect size, number of observations and alpha level we used above
# since these are independent samples we can use tt_ind_solve_power
# hint: the power we get should not be good
power = tt_ind_solve_power(
    effect_size=observed_effect_size,  # what we just calculated
    nobs1=n_A,  # the number of observations in A
    alpha=0.05,  # our alpha level
    power=None,  # what we're interested in
    ratio=1  # the ratio of number of observations of A and B
)
power

# In[96]:

# how many observations for each of A and B would we need to get a power of .9
#   for our observed effect size and alpha level
# eg. having a 90% change of correctly deciding B is better than A
n_obs_A = tt_ind_solve_power(effect_size=observed_effect_size,
                             nobs1=None,
                             alpha=0.05,
                             power=.9,
                             ratio=1)
Example #29
0
    def report_on(trial):
        """
        Calculate headline stats for TRIAL once
        """
        tr = TrialAnalysis.objects.get_or_create(trial=trial)[0]

        if trial.report_set.count() < 2:
            return

        nobs1 = int(trial.report_set.count()/2)
        if trial.offline:
            reports = trial.report_set.all()
        else:
            reports = trial.report_set.exclude(date__isnull=True)
        points = [t.get_value() for t in reports]
        pointsa = [t.get_value() for t in reports.filter(group__name=Group.GROUP_A)]
        pointsb = [t.get_value() for t in reports.filter(group__name=Group.GROUP_B)]
        sd = np.std(points)
        mean = np.mean(points)

        nobsa = len(pointsa)
        nobsb = len(pointsb)
        meana = np.mean(pointsa)
        meanb = np.mean(pointsb)
        stderrmeana = scistats.sem(pointsa)
        stderrmeanb = scistats.sem(pointsb)

        small = tt_ind_solve_power(effect_size=0.1, alpha=0.05, nobs1=nobs1, power=None)
        med = tt_ind_solve_power(effect_size=0.2, alpha=0.05, nobs1=nobs1, power=None)
        large = tt_ind_solve_power(effect_size=0.5, alpha=0.05, nobs1=nobs1, power=None)
        if trial.variable_set.get().style == Variable.BINARY:
            obs = np.array([[len([p for p in pointsa if p == True]),
                             len([p for p in pointsa if p == False])],
                            [len([p for p in pointsb if p == True]),
                             len([p for p in pointsb if p == False])]])
            try:
                chi2, pval, dof, expected = scistats.chi2_contingency(obs)
            except ValueError:
                exc = traceback.format_exc()
                class Message(letter.Letter):
                    Postie = POSTIE
                    From = '*****@*****.**'
                    To = '*****@*****.**'
                    Subject = 'Chi2 failure instance'
                    Body = "Couldn't run chi2 for {0}\n\n{1}".format(str(obs), exc)
                try:
                    Message.send()
                except:
                    print exc

                pval = None

        else:
            tstat, pval, df = ttest_ind(pointsa, pointsb)


        tr.power_small=small
        tr.power_med=med
        tr.power_large=large
        tr.sd=sd
        tr.mean=mean
        tr.nobsa = nobsa
        tr.nobsb = nobsb
        tr.meana = meana
        tr.meanb = meanb
        tr.stderrmeana = stderrmeana
        tr.stderrmeanb = stderrmeanb
        tr.pval = pval

        tr.save()
        return
def simulate_experiments(sample_sizes,
                         effect_size,
                         n_experiments,
                         viz_path,
                         alpha=0.05,
                         verbose=True):
    '''
    Function for simulating and comparing experiments carried out 
    with different sample sizes. For each experiment effect size 
    and alpha are fixed.

    Args:
        - sample_size: an integer specifying the sample size of each 
          of the two groups in the simulated experiments.
        - effect_size: a float specifying the magnitude of the
          difference between the two groups in the simulated 
          experiments (Cohen's d).
        - n_experiments: an integer specifying the number of 
          simulated experiments.
        - viz_path: a string specifying the location where to
          save the plotted results.
        - alpha: a float specifying the p-value threshold for
          considering the results of an experiment statistically
          significant.
        - verbose: a bolean specifying if the plotted results are showed 
          on screen.
        
    Returns:
        - None
    '''
    experiments_outcomes = []
    achieved_powers = []
    for size in sample_sizes:

        achieved_power = tt_ind_solve_power(effect_size=effect_size,
                                            nobs1=size,
                                            alpha=alpha,
                                            ratio=1.0)

        p_values = []
        effect_sizes = []
        for experiment in range(n_experiments):

            group_1, group_2 = generate_samples(n=size,
                                                effect_size=effect_size,
                                                sd=1.0)

            t, p = ttest_ind(a=group_1, b=group_2)
            p_values.append(round(p, 3))
            effect_sizes.append(round(cohen_d(t=t, n=size * 2), 3))

        experiments_outcomes.append({
            'p_values': p_values,
            'effect_sizes': effect_sizes
        })
        achieved_powers.append(achieved_power)

    visualize_experiments(sizes=sample_sizes,
                          experiments=experiments_outcomes,
                          powers=achieved_powers,
                          alpha=alpha,
                          effect_size=effect_size,
                          viz_path=viz_path,
                          verbose=verbose)
Example #31
0
def samples_per_branch_calculator(u_hat, mde=0.05, alpha=0.05, power=0.95):
    var_hat = u_hat * (1 - u_hat)
    standardized_effect_size = (u_hat - (u_hat * (1 + mde))) / np.sqrt(var_hat)
    sample_size = tt_ind_solve_power(effect_size=standardized_effect_size, alpha=alpha, power=power)
    return sample_size
    else:
        rho_values = map(int, rho_input.split(","))

    for rho in rho_values:
        pvalues = []
        powers005 = []
        powers001 = []
        powers0001 = []
        print("Rho = %d:" % rho)
        for comb in itertools.combinations(range(len(values1)), rho):
            vals1 = [values1[i] for i in comb]
            vals2 = [values2[i] for i in comb]
            stat, pvalue = ttest_ind(vals1, vals2, equal_var=True)
            power005 = tt_ind_solve_power(
                effect_size=(np.mean(vals1) - np.mean(vals2)) / np.std(vals1),
                nobs1=len(vals1),
                alpha=0.05,
                power=None)
            powers005.append(power005)
            power001 = tt_ind_solve_power(
                effect_size=(np.mean(vals1) - np.mean(vals2)) / np.std(vals1),
                nobs1=len(vals1),
                alpha=0.01,
                power=None)
            powers001.append(power001)
            power0001 = tt_ind_solve_power(
                effect_size=(np.mean(vals1) - np.mean(vals2)) / np.std(vals1),
                nobs1=len(vals1),
                alpha=0.001,
                power=None)
            powers0001.append(power0001)
Example #33
0
def ttest(effect=None, alpha=None, power=None):
    num = tt_ind_solve_power(effect_size=effect, alpha=alpha, power=power, nobs1=None)
    return int(num) * 2
Example #34
0
def power(effect_size):
    alpha = 0.05
    power = 0.8
    from statsmodels.stats.power import tt_ind_solve_power
    n = tt_ind_solve_power(effect_size=effect_size, alpha=alpha, power=power)
    return n
from statsmodels.stats.power import tt_ind_solve_power

# <codecell>


normmean = 40
normstd = 17
admean = 55
adstd = 20

ef = abs(normmean-admean)/(adstd+normstd)
ratio = 1.0
alpha = 0.05
power = 0.9

n0 = tt_ind_solve_power(effect_size=ef, alpha = alpha, power = power, ratio = ratio)
print n0

# <codecell>

import pandas as pd

# <codecell>

data = pd.read_excel('/home/will/ClaudioStuff/TableData.xlsx', 'Sheet1')

# <codecell>

data['HIV'] = data['HIVInfected'] == 'pos'
data['Aged'] = data['Age']>50
Example #36
0
def compare_groups(dataframe,
                   feature,
                   targets,
                   control_group=None,
                   alpha=0.05,
                   p_adjust=False,
                   show_groups=True,
                   **kwargs):
    figsize = (12, 8)
    edgecolor = None
    # Deal with keyword arguments
    for k, v in kwargs.items():
        if k not in ['figsize', 'edgecolor']:
            raise TypeError(
                "compare_groups got an unexpected keyword argument {}".format(
                    k))
        else:
            if k == 'figsize':
                figsize = v
            elif k == 'edgecolor':
                edgecolor = v
    text_color = plt.rcParams.get('ytick.color')
    # Deal with targets input
    if type(targets) == str:
        targets = [targets]
    for target in targets:
        control = None
        info = {}
        grouped = dataframe.groupby([feature])[target]
        if control_group is None:
            control_group = grouped.iloc[0][0]
        k = len(grouped) - 1
        for group in grouped:
            temp = {}
            if group[0] == control_group:
                control = np.array(group[1])
                continue
            else:
                test_group = np.array(group[1])
                size = len(test_group)
                if size == 1:
                    mu, std = control.mean(), control.std(ddof=1)
                    effect_size = np.abs((test_group[0] - mu) / std)
                    p = 2 * stats.norm.sf(effect_size)
                else:
                    stat, p = stats.ttest_ind(test_group,
                                              control,
                                              equal_var=False)
                    effect_size = cohen_d(test_group, control)
                if p_adjust:
                    p *= k
                    if p > 1:
                        p = 1

                temp['p-val'] = p
                temp['effect size'] = effect_size
                temp['size'] = size
                temp['power'] = tt_ind_solve_power(effect_size=effect_size,
                                                   nobs1=size,
                                                   alpha=alpha,
                                                   ratio=len(control) / size)
                info[group[0]] = temp

        info = pd.DataFrame.from_dict(info)
        print('Testing {} groups for statistically significant effects on {}'.
              format(feature, target))
        display(info.round(6))

        # Plot test results
        X = list([str(x) for x in info.columns])
        if not show_groups:
            fig, (ax1, ax2) = plt.subplots(2,
                                           sharex=True,
                                           figsize=figsize,
                                           gridspec_kw={"hspace": 0.05})
        else:
            fig = plt.figure(constrained_layout=True, figsize=figsize)
            gs = fig.add_gridspec(2, 2)
            ax = fig.add_subplot(gs[:, 0])
            if edgecolor is not None:
                ax = sns.boxplot(x=dataframe[feature],
                                 y=dataframe[target],
                                 whiskerprops={'color': edgecolor},
                                 capprops={'color': edgecolor},
                                 flierprops={
                                     'markerfacecolor': edgecolor,
                                     'markeredgecolor': edgecolor
                                 })
            else:
                ax = sns.boxplot(x=dataframe[feature], y=dataframe[target])
            # fix edgecolors if needed:
            #if edgecolor is not None:
            #    for i, artist in enumerate(ax.artists):
            #        #artist.set_edgecolor(edgecolor)
            #        for j in range(i*6, i*6+6):
            #            if j in range(i*6+4, i*6+6):
            #                continue
            #            line = ax.lines[j]
            #            line.set_color(edgecolor)
            #            line.set_mfc(edgecolor)
            #            line.set_mec(edgecolor)
            ax1 = fig.add_subplot(gs[0, 1])
            ax2 = fig.add_subplot(gs[1, 1])
        ax1.set_title('Target: {}'.format(target), color=text_color)
        if len(grouped) - 1 == 1:
            ax1.scatter(
                X,
                info.loc['p-val'],
                color='#3572C6',
                label='p-value',
                marker='x',
                linewidth=4,
                s=50,
            )
        else:
            ax1.plot(X, info.loc['p-val'], color='#3572C6', label='p-value')
        ax1.axhline(y=alpha,
                    ls='-.',
                    label='alpha: {}'.format(alpha),
                    alpha=0.7)
        ax1.set(xlabel='')
        ax1.legend()
        if len(grouped) - 1 == 1:
            ax2.scatter(
                X,
                info.loc['effect size'],
                color='g',
                label='effect size',
                marker='x',
                linewidth=4,
                s=50,
            )
        else:
            ax2.plot(X,
                     info.loc['effect size'],
                     color='g',
                     label='effect size')
        ax2.set_xlabel('{}'.format(feature), color=text_color)
        ax2.legend()
        plt.show()
Example #37
0
"""
	d Value	Meaning
1.	0 - 0.2	Negligible
2.	0.2 - 0.5	Small
3.	0.5 - 0.8	Medium
4.	0.80 +	Large
"""

print(logo_grouped.count())
d = (8.58 - 8.44) / (np.std(dat.loc[dat.logo == 'Logo A', 'sentiment']))
print("d = ", d)
print(
    "power = ",
    tt_ind_solve_power(effect_size=d,
                       nobs1=32,
                       alpha=0.05,
                       power=None,
                       ratio=1,
                       alternative='two-sided'))

ax = plt.figure(figsize=(8, 8)).gca()  # define axis
temp = dat[dat.logo != 'Logo C']
sns.boxplot(x='logo', y='sentiment', data=temp, ax=ax)
sns.swarmplot(x='logo',
              y='sentiment',
              color='black',
              data=temp,
              ax=ax,
              alpha=0.4)
#plt.show()

print(
Example #38
0
def ttest(effect=None, alpha=None, power=None):
    num = tt_ind_solve_power(effect_size=effect,
                             alpha=alpha,
                             power=power,
                             nobs1=None)
    return int(num) * 2