This version includes inter-trial intervals (ITIs). ''' iti = 5 n_rep_train = 5 n_rep_extn = 5 n_rep_test = 2 n_rep_pre_exp = 5 n_rep_no_stim = 10 ##### DEFINE STAGES ##### no_stim_stage = expr.stage(x_pn = [[]], x_bg = ['ctx'], y_psb = ['us'], order_fixed = True, iti = 0, n_rep = n_rep_no_stim) no_stim_ctx_a_stage = expr.stage(x_pn = [[]], x_bg = ['ctx_a'], y_psb = ['us'], order_fixed = True, iti = 0, n_rep = n_rep_no_stim) test_stage = expr.stage(x_pn = [['cs']], x_bg = ['ctx'], y_psb = ['us'], order_fixed = True, iti = iti,
import pandas as pd from statsrat import expr ''' Simplified category learning tasks (smaller versions of the tasks like those in 'cat' -> 'kitten'). ''' # learned predictiveness design = expr.schedule(resp_type = 'choice', stages = {'relevance': expr.stage(x_pn = [['a', 'x'], ['a', 'y'], ['b', 'x'], ['b', 'y']], y = [['cat1'], ['cat1'], ['cat2'], ['cat2']], n_rep = 10), 'transfer': expr.stage(x_pn = [['a', 'x'], ['b', 'y']], y = [['cat3'], ['cat4']], n_rep = 10), 'test': expr.stage(x_pn = [['a', 'y'], ['b', 'x']], y_psb = ['cat3', 'cat4'], lrn = False, n_rep = 1)}) rel_irl_oat = expr.oat(schedule_pos = ['design'], behav_score_pos = expr.behav_score(stage = 'test', trial_pos = ['a.y -> nothing', 'b.x -> nothing'], trial_neg = ['a.y -> nothing', 'b.x -> nothing'], resp_pos = ['cat3', 'cat4'], resp_neg = ['cat4', 'cat3'])) learned_predictiveness = expr.experiment(schedules = {'design': design}, oats = {'rel_irl': rel_irl_oat}) del design; del rel_irl_oat
The ITI was 2 minutes (4 times the CS length). The test took place on day 4, and consisted of 4 trials. The ITI was 2 minutes (4 times the CS length). """ from statsrat import expr iti = 5 n_rep_train = 5 n_rep_extn = 10 n_rep_test = 5 training = expr.stage(x_pn=[['cs1'], ['cs2']], x_bg=['ctx_a'], y=2 * [['us']], y_psb=['us'], order_fixed=True, iti=iti, n_rep=n_rep_train) extinction_cs1 = expr.stage(x_pn=[['cs1']], x_bg=['ctx_b1'], y_psb=['us'], order_fixed=True, iti=iti, n_rep=n_rep_extn) extinction_cs2 = expr.stage(x_pn=[['cs2']], x_bg=['ctx_b2'], y_psb=['us'], order_fixed=True,
from statsrat import expr # Category learning tasks. # FAST (Joel Stoddard collab) design = expr.schedule(resp_type = 'choice', stages = { 'tutorial_0a': expr.stage( x_pn = [['alpha'], ['beta']], y = [['cati'], ['catii']], y_psb = ['cati', 'catii'], n_rep = 6), 'tutorial_0b': expr.stage( x_pn = [['alpha'], ['beta']], y = [['cati'], ['catii']], y_psb = ['cati', 'catii'], n_rep = 6), 'tutorial_0c': expr.stage( x_pn = [['alpha', 'theta'], ['beta', 'theta'], ['alpha', 'phi'], ['beta', 'phi']], y = 2*[['cati'], ['catii']], y_psb = ['cati', 'catii'], n_rep = 6), 'relevance': expr.stage( x_pn = [['b1', 't1'], ['b1', 't2'], ['b2', 't1'], ['b2', 't2'], ['t3', 'b3'], ['t3', 'b4'], ['t4', 'b3'], ['t4', 'b4']], y = 2*[['cat1'], ['cat1'], ['cat2'], ['cat2']], y_psb = ['cat1', 'cat2'], n_rep = 12), 'transfer': expr.stage( x_pn = [['t5', 'b5'], ['t6', 'b6'], ['t1', 'b1'], ['t2', 'b2'], ['t3', 'b3'], ['t4', 'b4']], y = 3*[['cat3'], ['cat4']], y_psb = ['cat3', 'cat4'],
from statsrat import expr ''' Inverse base rate effect (IBRE) and related experiments. ''' ##### BASIC INVERSE BASE RATE EFFECT DESIGN ##### # Kruschke (1996), Experiment 1 (inverse base rate effect) # I'm missing some of the test trial types. design = expr.schedule(resp_type='choice', stages={ 'training': expr.stage(freq=[3, 1, 3, 1], x_pn=[['i1', 'pc1'], ['i1', 'pr1'], ['i2', 'pc2'], ['i2', 'pr2']], y=[['c1'], ['r1'], ['c2'], ['r2']], y_psb=['c1', 'r1', 'c2', 'r2'], n_rep=15), 'test': expr.stage(x_pn=[['pc1'], ['pr1'], ['pc2'], ['pr2'], ['pc1', 'pr1'], ['pc2', 'pr2']], y_psb=['c1', 'r1', 'c2', 'r2'], lrn=False, n_rep=2) }) pc_pr = expr.oat(schedule_pos=['design'], behav_score_pos=expr.behav_score( stage='test', trial_pos=['pc1.pr1 -> nothing', 'pc2.pr2 -> nothing'], trial_neg=['pc1.pr1 -> nothing', 'pc2.pr2 -> nothing'],
iti = 5 n_rep_train = 5 n_rep_extn = 5 n_rep_test = 2 n_rep_pre_exp = 5 n_rep_no_stim = 10 ##### DEFINE STAGES ##### no_stim_stage_t0 = expr.stage(x_pn=[[]], x_bg=['ctx', 'time'], x_value=pd.Series({ 'cs': 1.0, 'ctx': 1.0, 'time': 0.0 }), y_psb=['us'], order_fixed=True, iti=0, n_rep=n_rep_no_stim) no_stim_ctx_a_stage_t0 = expr.stage(x_pn=[[]], x_bg=['ctx_a', 'time'], x_value=pd.Series({ 'cs': 1.0, 'ctx_a': 1.0, 'time': 0.0 }), y_psb=['us'], order_fixed=True,