def predict(model_path, img_list): model = step2_train_nodule_detector.get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=model_path) logger.info("=====model has been loaded=====") # batch_size = 128 batch_size = 1 # for test batch_list = [] batch_list_loc = [] count = 0 predictions = [] for item in img_list: cube_img = item[0] file_name = item[1] patient_id = analysis_filename(file_name)[0] logger.info("====={0} - patient_id {1}".format(count, patient_id)) logger.info("the shape of cube image: {0}".format( numpy.array(cube_img).shape)) # (1, 32, 32, 32, 1) count += 1 batch_list.append(cube_img) batch_list_loc.append(file_name) # logger.info("batch list: {0}".format(batch_list)) # logger.info("the shape of batch list: {0}".format(numpy.array(batch_list).shape)) # (1, 1, 32, 32, 32, 1) # logger.info("batch list loc: {0}".format(batch_list_loc)) # if len(batch_list) % batch_size == 0: batch_data = numpy.vstack(batch_list) p = model.predict(batch_data, batch_size=batch_size) # logger.info("the prediction result p: {0}".format(p)) # [array([[ 0.00064842]], dtype=float32), array([[ 1.68593288e-05]], dtype=float32)] # logger.info("the shape of p:{0}".format(numpy.array(p).shape)) # (2, 1, 1) # logger.info("the length of p[0]:{0}".format(len(p[0]))) # 1 # for i in range(len(p[0])): i = 0 file_name = batch_list_loc[i] nodule_chance = p[0][i][0] diameter_mm = round(p[1][i][0], 4) nodule_chance = round(nodule_chance, 4) # logger.info("nodule chance:{0}, diameter_mm:{1}".format(nodule_chance, diameter_mm)) item_prediction = [file_name, nodule_chance, diameter_mm] predictions.append(item_prediction) batch_list = [] batch_list_loc = [] # count = 0 return predictions
return df_nodule_predictions holdout_ext = "" magnification = 1 flip = False holdout_no = -1 ext_name = "luna_fs" fold_count = 2 flip_ext = "" model_path = os.environ['DATA_DIR'] + '/models/model_luna16_full__fs_best.hd5' if flip: flip_ext = "_flip" model = step2_train_nodule_detector.get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=model_path) def predict_cubes(patient_ids, z0, model_path, magnification=1, flip=False, holdout_no=-1, ext_name="", fold_count=2): sw = helpers.Stopwatch.start_new() all_predictions_csv = [] for patient_index, patient_id in enumerate(reversed(patient_ids)): if "metadata" in patient_id:
def predict_cubes(model_path, continue_job, only_patient_id=None, luna16=False, magnification=1, flip=False, train_data=True, holdout_no=-1, ext_name="", fold_count=2): if luna16: dst_dir = settings.LUNA_NODULE_DETECTION_DIR else: dst_dir = settings.NDSB3_NODULE_DETECTION_DIR if not os.path.exists(dst_dir): os.makedirs(dst_dir) holdout_ext = "" # if holdout_no is not None: # holdout_ext = "_h" + str(holdout_no) if holdout_no >= 0 else "" flip_ext = "" if flip: flip_ext = "_flip" dst_dir += "predictions" + str(int( magnification * 10)) + holdout_ext + flip_ext + "_" + ext_name + "/" if not os.path.exists(dst_dir): os.makedirs(dst_dir) sw = helpers.Stopwatch.start_new() model = step2_train_nodule_detector.get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=model_path) if not luna16: if train_data: labels_df = pandas.read_csv("resources/stage1_labels.csv") labels_df.set_index(["id"], inplace=True) else: #labels_df = pandas.read_csv("resources/stage2_sample_submission.csv") labels_df = pandas.read_csv("resources/tc_sample_submission.csv") labels_df.set_index(["id"], inplace=True) patient_ids = [] for file_name in os.listdir(settings.NDSB3_EXTRACTED_IMAGE_DIR): if not os.path.isdir(settings.NDSB3_EXTRACTED_IMAGE_DIR + file_name): continue patient_ids.append(file_name) all_predictions_csv = [] for patient_index, patient_id in enumerate(reversed(patient_ids)): if not luna16: if patient_id not in labels_df.index: continue if "metadata" in patient_id: continue if only_patient_id is not None and only_patient_id != patient_id: continue if holdout_no is not None and train_data: patient_fold = helpers.get_patient_fold(patient_id) patient_fold %= fold_count if patient_fold != holdout_no: continue print(patient_index, ": ", patient_id) csv_target_path = dst_dir + patient_id + ".csv" if continue_job and only_patient_id is None: if os.path.exists(csv_target_path): continue patient_img = helpers.load_patient_images( patient_id, settings.NDSB3_EXTRACTED_IMAGE_DIR, "*_i.png", []) if magnification != 1: patient_img = helpers.rescale_patient_images( patient_img, (1, 1, 1), magnification) patient_mask = helpers.load_patient_images( patient_id, settings.NDSB3_EXTRACTED_IMAGE_DIR, "*_m.png", []) if magnification != 1: patient_mask = helpers.rescale_patient_images(patient_mask, (1, 1, 1), magnification, is_mask_image=True) # patient_img = patient_img[:, ::-1, :] # patient_mask = patient_mask[:, ::-1, :] step = PREDICT_STEP CROP_SIZE = CUBE_SIZE # CROP_SIZE = 48 predict_volume_shape_list = [0, 0, 0] for dim in range(3): dim_indent = 0 while dim_indent + CROP_SIZE < patient_img.shape[dim]: predict_volume_shape_list[dim] += 1 dim_indent += step predict_volume_shape = (predict_volume_shape_list[0], predict_volume_shape_list[1], predict_volume_shape_list[2]) predict_volume = numpy.zeros(shape=predict_volume_shape, dtype=float) print("Predict volume shape: ", predict_volume.shape) done_count = 0 skipped_count = 0 batch_size = 128 batch_list = [] batch_list_coords = [] patient_predictions_csv = [] cube_img = None annotation_index = 0 for z in range(0, predict_volume_shape[0]): for y in range(0, predict_volume_shape[1]): for x in range(0, predict_volume_shape[2]): #if cube_img is None: cube_img = patient_img[z * step:z * step + CROP_SIZE, y * step:y * step + CROP_SIZE, x * step:x * step + CROP_SIZE] cube_mask = patient_mask[z * step:z * step + CROP_SIZE, y * step:y * step + CROP_SIZE, x * step:x * step + CROP_SIZE] if cube_mask.sum() < 2000: skipped_count += 1 else: if flip: cube_img = cube_img[:, :, ::-1] if CROP_SIZE != CUBE_SIZE: cube_img = helpers.rescale_patient_images2( cube_img, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)) # helpers.save_cube_img("c:/tmp/cube.png", cube_img, 8, 4) # cube_mask = helpers.rescale_patient_images2(cube_mask, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)) img_prep = prepare_image_for_net3D(cube_img) batch_list.append(img_prep) batch_list_coords.append((z, y, x)) if len(batch_list) % batch_size == 0: batch_data = numpy.vstack(batch_list) p = model.predict(batch_data, batch_size=batch_size) for i in range(len(p[0])): p_z = batch_list_coords[i][0] p_y = batch_list_coords[i][1] p_x = batch_list_coords[i][2] nodule_chance = p[0][i][0] predict_volume[p_z, p_y, p_x] = nodule_chance if nodule_chance > P_TH: p_z = p_z * step + CROP_SIZE / 2 p_y = p_y * step + CROP_SIZE / 2 p_x = p_x * step + CROP_SIZE / 2 p_z_perc = round( p_z / patient_img.shape[0], 4) p_y_perc = round( p_y / patient_img.shape[1], 4) p_x_perc = round( p_x / patient_img.shape[2], 4) diameter_mm = round(p[1][i][0], 4) # diameter_perc = round(2 * step / patient_img.shape[2], 4) diameter_perc = round( 2 * step / patient_img.shape[2], 4) diameter_perc = round( diameter_mm / patient_img.shape[2], 4) nodule_chance = round(nodule_chance, 4) #patient_predictions_csv_line = [annotation_index, p_x_perc, p_y_perc, p_z_perc, diameter_perc, nodule_chance, diameter_mm] patient_predictions_csv_line = [ annotation_index, p_x_perc, p_y_perc, p_z_perc, diameter_perc, nodule_chance, diameter_mm, p_x, p_y, p_z ] #patient_predictions_csv_line = [annotation_index, p_x, p_y, p_z, diameter_perc, nodule_chance, diameter_mm] patient_predictions_csv.append( patient_predictions_csv_line) all_predictions_csv.append( [patient_id] + patient_predictions_csv_line) annotation_index += 1 batch_list = [] batch_list_coords = [] done_count += 1 if done_count % 10000 == 0: print("Done: ", done_count, " skipped:", skipped_count) df = pandas.DataFrame(patient_predictions_csv, columns=[ "anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm", "abs_x", "abs_y", "abs_z" ]) filter_patient_nodules_predictions(df, patient_id, CROP_SIZE * magnification) df.to_csv(csv_target_path, index=False) # cols = ["anno_index", "nodule_chance", "diamete_mm"] + ["f" + str(i) for i in range(64)] # df_features = pandas.DataFrame(patient_features_csv, columns=cols) # for index, row in df.iterrows(): # if row["diameter_mm"] < 0: # print("Dropping") # anno_index = row["anno_index"] # df_features.drop(df_features[df_features["anno_index"] == anno_index].index, inplace=True) # # df_features.to_csv(csv_target_path_features, index=False) # df = pandas.DataFrame(all_predictions_csv, columns=["patient_id", "anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm"]) # df.to_csv("c:/tmp/tmp2.csv", index=False) print(predict_volume.mean()) print("Done in : ", sw.get_elapsed_seconds(), " seconds")
def predict_cubes(path, model_path, magnification=1, holdout_no=-1, ext_name="", fold_count=2): dst_dir = settings.LUNA_NODULE_DETECTION_DIR if not os.path.exists(dst_dir): os.makedirs(dst_dir) holdout_ext = "" dst_dir += "predictions" + str(int( magnification * 10)) + holdout_ext + "_" + ext_name + "/" if not os.path.exists(dst_dir): os.makedirs(dst_dir) sw = helpers.Stopwatch.start_new() model = step2_train_nodule_detector.get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=model_path) patient_id = path all_predictions_csv = [] if holdout_no is not None: patient_fold = helpers.get_patient_fold(patient_id) patient_fold %= fold_count print(": ", patient_id) csv_target_path = dst_dir + patient_id + ".csv" print(patient_id) try: patient_img = helpers.load_patient_images(patient_id + '_Preprocessed', '', "*_i.png", []) except: print('Please Re-Process the dicom file again') if magnification != 1: patient_img = helpers.rescale_patient_images(patient_img, (1, 1, 1), magnification) patient_mask = helpers.load_patient_images(patient_id + '_Preprocessed', '', "*_m.png", []) if magnification != 1: patient_mask = helpers.rescale_patient_images(patient_mask, (1, 1, 1), magnification, is_mask_image=True) # patient_img = patient_img[:, ::-1, :] # patient_mask = patient_mask[:, ::-1, :] step = PREDICT_STEP CROP_SIZE = CUBE_SIZE # CROP_SIZE = 48 predict_volume_shape_list = [0, 0, 0] for dim in range(3): dim_indent = 0 while dim_indent + CROP_SIZE < patient_img.shape[dim]: predict_volume_shape_list[dim] += 1 dim_indent += step predict_volume_shape = (predict_volume_shape_list[0], predict_volume_shape_list[1], predict_volume_shape_list[2]) predict_volume = numpy.zeros(shape=predict_volume_shape, dtype=float) print("Predict volume shape: ", predict_volume.shape) done_count = 0 skipped_count = 0 batch_size = 128 batch_list = [] batch_list_coords = [] patient_predictions_csv = [] cube_img = None annotation_index = 0 for z in range(0, predict_volume_shape[0]): for y in range(0, predict_volume_shape[1]): for x in range(0, predict_volume_shape[2]): #if cube_img is None: cube_img = patient_img[z * step:z * step + CROP_SIZE, y * step:y * step + CROP_SIZE, x * step:x * step + CROP_SIZE] cube_mask = patient_mask[z * step:z * step + CROP_SIZE, y * step:y * step + CROP_SIZE, x * step:x * step + CROP_SIZE] if cube_mask.sum() < 2000: skipped_count += 1 if CROP_SIZE != CUBE_SIZE: cube_img = helpers.rescale_patient_images2( cube_img, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)) # helpers.save_cube_img("c:/tmp/cube.png", cube_img, 8, 4) # cube_mask = helpers.rescale_patient_images2(cube_mask, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)) img_prep = prepare_image_for_net3D(cube_img) batch_list.append(img_prep) batch_list_coords.append((z, y, x)) if len(batch_list) % batch_size == 0: batch_data = numpy.vstack(batch_list) p = model.predict(batch_data, batch_size=batch_size) for i in range(len(p[0])): p_z = batch_list_coords[i][0] p_y = batch_list_coords[i][1] p_x = batch_list_coords[i][2] nodule_chance = p[0][i][0] predict_volume[p_z, p_y, p_x] = nodule_chance if nodule_chance > P_TH: p_z = p_z * step + CROP_SIZE / 2 p_y = p_y * step + CROP_SIZE / 2 p_x = p_x * step + CROP_SIZE / 2 p_z_perc = round(p_z / patient_img.shape[0], 4) p_y_perc = round(p_y / patient_img.shape[1], 4) p_x_perc = round(p_x / patient_img.shape[2], 4) diameter_mm = round(p[1][i][0], 4) # diameter_perc = round(2 * step / patient_img.shape[2], 4) diameter_perc = round( 2 * step / patient_img.shape[2], 4) diameter_perc = round( diameter_mm / patient_img.shape[2], 4) nodule_chance = round(nodule_chance, 4) patient_predictions_csv_line = [ annotation_index, p_x_perc, p_y_perc, p_z_perc, diameter_perc, nodule_chance, diameter_mm ] patient_predictions_csv.append( patient_predictions_csv_line) all_predictions_csv.append( [patient_id] + patient_predictions_csv_line) annotation_index += 1 batch_list = [] batch_list_coords = [] done_count += 1 if done_count % 10000 == 0: print("Done: ", done_count, " skipped:", skipped_count) df = pandas.DataFrame(patient_predictions_csv, columns=[ "anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm" ]) print("Started Filtering") print(all_predictions_csv) #print(batch_data) filter_patient_nodules_predictions(df, patient_id, CROP_SIZE * magnification) df.to_csv(csv_target_path, index=False) # cols = ["anno_index", "nodule_chance", "diamete_mm"] + ["f" + str(i) for i in range(64)] # df_features = pandas.DataFrame(patient_features_csv, columns=cols) # for index, row in df.iterrows(): # if row["diameter_mm"] < 0: # print("Dropping") # anno_index = row["anno_index"] # df_features.drop(df_features[df_features["anno_index"] == anno_index].index, inplace=True) # # df_features.to_csv(csv_target_path_features, index=False) # df = pandas.DataFrame(all_predictions_csv, columns=["patient_id", "anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm"]) # df.to_csv("c:/tmp/tmp2.csv", index=False) print(predict_volume.mean()) print("Done in : ", sw.get_elapsed_seconds(), " seconds")
def predict_cubes(model_path, continue_job, only_patient_id=None, luna16=False, magnification=1, flip=False, train_data=True, holdout_no=-1, ext_name="", fold_count=2): if luna16: dst_dir = settings.LUNA_NODULE_DETECTION_DIR else: dst_dir = settings.NDSB3_NODULE_DETECTION_DIR if not os.path.exists(dst_dir): os.makedirs(dst_dir) holdout_ext = "" # if holdout_no is not None: # holdout_ext = "_h" + str(holdout_no) if holdout_no >= 0 else "" flip_ext = "" if flip: flip_ext = "_flip" dst_dir += "predictions" + str(int(magnification * 10)) + holdout_ext + flip_ext + "_" + ext_name + "/" if not os.path.exists(dst_dir): os.makedirs(dst_dir) sw = helpers.Stopwatch.start_new() model = step2_train_nodule_detector.get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=model_path) if not luna16: if train_data: labels_df = pandas.read_csv("resources/stage1_labels.csv") labels_df.set_index(["id"], inplace=True) else: labels_df = pandas.read_csv("resources/stage2_sample_submission.csv") labels_df.set_index(["id"], inplace=True) patient_ids = [] for file_name in os.listdir(settings.NDSB3_EXTRACTED_IMAGE_DIR): if not os.path.isdir(settings.NDSB3_EXTRACTED_IMAGE_DIR + file_name): continue patient_ids.append(file_name) all_predictions_csv = [] for patient_index, patient_id in enumerate(reversed(patient_ids)): if not luna16: if patient_id not in labels_df.index: continue if "metadata" in patient_id: continue if only_patient_id is not None and only_patient_id != patient_id: continue if holdout_no is not None and train_data: patient_fold = helpers.get_patient_fold(patient_id) patient_fold %= fold_count if patient_fold != holdout_no: continue print(patient_index, ": ", patient_id) csv_target_path = dst_dir + patient_id + ".csv" if continue_job and only_patient_id is None: if os.path.exists(csv_target_path): continue patient_img = helpers.load_patient_images(patient_id, settings.NDSB3_EXTRACTED_IMAGE_DIR, "*_i.png", []) if magnification != 1: patient_img = helpers.rescale_patient_images(patient_img, (1, 1, 1), magnification) patient_mask = helpers.load_patient_images(patient_id, settings.NDSB3_EXTRACTED_IMAGE_DIR, "*_m.png", []) if magnification != 1: patient_mask = helpers.rescale_patient_images(patient_mask, (1, 1, 1), magnification, is_mask_image=True) # patient_img = patient_img[:, ::-1, :] # patient_mask = patient_mask[:, ::-1, :] step = PREDICT_STEP CROP_SIZE = CUBE_SIZE # CROP_SIZE = 48 predict_volume_shape_list = [0, 0, 0] for dim in range(3): dim_indent = 0 while dim_indent + CROP_SIZE < patient_img.shape[dim]: predict_volume_shape_list[dim] += 1 dim_indent += step predict_volume_shape = (predict_volume_shape_list[0], predict_volume_shape_list[1], predict_volume_shape_list[2]) predict_volume = numpy.zeros(shape=predict_volume_shape, dtype=float) print("Predict volume shape: ", predict_volume.shape) done_count = 0 skipped_count = 0 batch_size = 128 batch_list = [] batch_list_coords = [] patient_predictions_csv = [] cube_img = None annotation_index = 0 for z in range(0, predict_volume_shape[0]): for y in range(0, predict_volume_shape[1]): for x in range(0, predict_volume_shape[2]): #if cube_img is None: cube_img = patient_img[z * step:z * step+CROP_SIZE, y * step:y * step + CROP_SIZE, x * step:x * step+CROP_SIZE] cube_mask = patient_mask[z * step:z * step+CROP_SIZE, y * step:y * step + CROP_SIZE, x * step:x * step+CROP_SIZE] if cube_mask.sum() < 2000: skipped_count += 1 else: if flip: cube_img = cube_img[:, :, ::-1] if CROP_SIZE != CUBE_SIZE: cube_img = helpers.rescale_patient_images2(cube_img, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)) # helpers.save_cube_img("c:/tmp/cube.png", cube_img, 8, 4) # cube_mask = helpers.rescale_patient_images2(cube_mask, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)) img_prep = prepare_image_for_net3D(cube_img) batch_list.append(img_prep) batch_list_coords.append((z, y, x)) if len(batch_list) % batch_size == 0: batch_data = numpy.vstack(batch_list) p = model.predict(batch_data, batch_size=batch_size) for i in range(len(p[0])): p_z = batch_list_coords[i][0] p_y = batch_list_coords[i][1] p_x = batch_list_coords[i][2] nodule_chance = p[0][i][0] predict_volume[p_z, p_y, p_x] = nodule_chance if nodule_chance > P_TH: p_z = p_z * step + CROP_SIZE / 2 p_y = p_y * step + CROP_SIZE / 2 p_x = p_x * step + CROP_SIZE / 2 p_z_perc = round(p_z / patient_img.shape[0], 4) p_y_perc = round(p_y / patient_img.shape[1], 4) p_x_perc = round(p_x / patient_img.shape[2], 4) diameter_mm = round(p[1][i][0], 4) # diameter_perc = round(2 * step / patient_img.shape[2], 4) diameter_perc = round(2 * step / patient_img.shape[2], 4) diameter_perc = round(diameter_mm / patient_img.shape[2], 4) nodule_chance = round(nodule_chance, 4) patient_predictions_csv_line = [annotation_index, p_x_perc, p_y_perc, p_z_perc, diameter_perc, nodule_chance, diameter_mm] patient_predictions_csv.append(patient_predictions_csv_line) all_predictions_csv.append([patient_id] + patient_predictions_csv_line) annotation_index += 1 batch_list = [] batch_list_coords = [] done_count += 1 if done_count % 10000 == 0: print("Done: ", done_count, " skipped:", skipped_count) df = pandas.DataFrame(patient_predictions_csv, columns=["anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm"]) filter_patient_nodules_predictions(df, patient_id, CROP_SIZE * magnification) df.to_csv(csv_target_path, index=False) # cols = ["anno_index", "nodule_chance", "diamete_mm"] + ["f" + str(i) for i in range(64)] # df_features = pandas.DataFrame(patient_features_csv, columns=cols) # for index, row in df.iterrows(): # if row["diameter_mm"] < 0: # print("Dropping") # anno_index = row["anno_index"] # df_features.drop(df_features[df_features["anno_index"] == anno_index].index, inplace=True) # # df_features.to_csv(csv_target_path_features, index=False) # df = pandas.DataFrame(all_predictions_csv, columns=["patient_id", "anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm"]) # df.to_csv("c:/tmp/tmp2.csv", index=False) print(predict_volume.mean()) print("Done in : ", sw.get_elapsed_seconds(), " seconds")
def predict_area(model_path, data_source="testdata_neg", flip=False, ext_name=""): logger.info("Predict cubes with model {0}, data_source {1} ".format(model_path, data_source)) if data_source == "testdata_neg": src_dir = settings.SEPARATE_TESTDATA_NEG_DIR dst_dir = settings.PREDICT_TESTDATA_NEG_DIR else: src_dir = settings.SEPARATE_TESTDATA_POS_DIR dst_dir = settings.PREDICT_TESTDATA_POS_DIR holdout_ext = "" # if holdout_no is not None: # holdout_ext = "_h" + str(holdout_no) if holdout_no >= 0 else "" flip_ext = "" if flip: flip_ext = "_flip" dst_dir += "predictions" + holdout_ext + flip_ext + "_" + ext_name + "/" if not os.path.exists(dst_dir): os.makedirs(dst_dir) model = step2_train_nodule_detector.get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=model_path) logger.info("=====model has been loaded=====") test_files = glob.glob(src_dir + "*.png") # helpers.load_cube_img(test_item, 6, 8, 48) # helpers.load_cube_img(test_item, 8, 8, 64) img_list = data_generator(test_files, data_source) logger.info("img_list(data_generator) is ok.") # batch_size = 128 batch_size = 1 # for test batch_list = [] batch_list_loc = [] annotation_index = 0 area_predictions_csv = [] true_positive, false_negative = 0, 0 true_negative, false_positive = 0, 0 count = 0 for item in img_list: cube_img = item[0] file_name = item[1] parts = file_name.split('_') if parts[0] == "ndsb3manual" or parts[0] == "hostpitalmanual": patient_id = parts[1] else: patient_id = parts[0] logger.info("{0} - patient_id {1}".format(count, patient_id)) # logger.info("the shape of cube image: {0}".format(numpy.array(cube_img).shape)) # (1, 32, 32, 32, 1) count += 1 batch_list.append(cube_img) batch_list_loc.append(file_name) # logger.info("batch list: {0}".format(batch_list)) # logger.info("the shape of batch list: {0}".format(numpy.array(batch_list).shape)) # (1, 1, 32, 32, 32, 1) # logger.info("batch list loc: {0}".format(batch_list_loc)) if len(batch_list) % batch_size == 0: batch_data = numpy.vstack(batch_list) p = model.predict(batch_data, batch_size=batch_size) logger.info("the prediction result p: {0}".format(p)) logger.info("the shape of p:{0}".format(numpy.array(p).shape)) logger.info("=====the length of p[0]:{0}".format(len(p[0]))) for i in range(len(p[0])): file_name = batch_list_loc[i] csv_target_path = dst_dir + os.path.splitext(file_name)[0] + ".csv" nodule_chance = p[0][i][0] diameter_mm = round(p[1][i][0], 4) nodule_chance = round(nodule_chance, 4) logger.info("csv_target_path:{0}".format(csv_target_path)) logger.info("nodule chance:{0}".format(nodule_chance)) logger.info("Cube diameter_mm {0} ".format(diameter_mm)) if data_source == "testdata_pos": if nodule_chance > P_TH: true_positive += 1 result = "true positive" else: false_negative += 1 result = "false negative" filter_wrong_predict_file(settings.WRONG_PREDICTION_FN, src_dir + file_name) else: if nodule_chance > P_TH: false_positive += 1 result = "false positive" filter_wrong_predict_file(settings.WRONG_PREDICTION_FP, src_dir + file_name) else: true_negative += 1 result = "true negative" area_predictions_csv_line = [annotation_index, nodule_chance, diameter_mm, result] area_predictions_csv.append(area_predictions_csv_line) logger.info("the shape of area_predictions_csv:{0}".format(numpy.array(area_predictions_csv).shape)) annotation_index += 1 # logger.info("pandas.dataframe begginning...") df = pandas.DataFrame(area_predictions_csv, columns=["anno_index", "nodule_chance", "diameter_mm", "result"]) logger.info("pandas.dataframe done...") df.to_csv(csv_target_path, index=False) annotation_index = 0 area_predictions_csv = [] logger.info("area_predictions_csv has been cleared.") batch_list = [] batch_list_loc = [] # count = 0 if data_source == "testdata_pos": return true_positive, false_negative else: return false_positive, true_negative