def combineInventoriesforFacilitiesinBaseInventory(base_inventory, inventory_dict, filter_for_LCI=True, remove_overlap=True): """Combine stewi inventories for all facilities present in base_inventory. The base_inventory must be in the inventory_dict :param base_inventory: reference inventory e.g. "TRI" :param inventory_dict: dictionary of inventories and years, e.g. {"TRI":"2014","NEI":"2014","RCRAInfo":"2015"} :param filter_for_LCI: boolean. Passes through to stewi to filter_for_LCI. See stewi. :param remove_overlap: boolean. Removes overlap across inventories based on preferences defined in globals :return: Flow-By-Facility Combined Format """ inventory_acronyms = list(inventory_dict.keys()) facilitymatches = facilitymatcher.get_matches_for_inventories( inventory_acronyms) inventories = getInventoriesforFacilityMatches(inventory_dict, facilitymatches, filter_for_LCI, base_inventory) inventories = addChemicalMatches(inventories) # Aggregate and remove overlap if requested if remove_overlap: inventories = aggregate_and_remove_overlap(inventories) inventories = addBaseInventoryIDs(inventories, facilitymatches, base_inventory) return inventories
def combineFullInventories(inventory_dict, filter_for_LCI=True, remove_overlap=True): """Combines full stewi inventories :param inventory_dict: dictionary of inventories and years, e.g. {"TRI":"2014","NEI":"2014","RCRAInfo":"2015"} :param filter_for_LCI: boolean. Passes through to stewi to filter_for_LCI. See stewi. :param remove_overlap: boolean. Removes overlap across inventories based on preferences defined in globals :return: Flow-By-Facility Combined Format """ inventory_acronyms = list(inventory_dict.keys()) facilitymatches = facilitymatcher.get_matches_for_inventories(inventory_acronyms) inventories = getInventoriesforFacilityMatches(inventory_dict, facilitymatches, filter_for_LCI) inventories = addChemicalMatches(inventories) # Aggregate and remove overlap if requested if remove_overlap: inventories = aggregate_and_remove_overlap(inventories) # For combined records, preserve record of that in 'FacilityIDs_Combined' inventories['FacilityIDs_Combined'] = inventories['FacilityID'] # Otherwise take the first ID as the facility ID inventories['FacilityID'] = \ inventories['FacilityID'].apply(lambda x: get_id_before_underscore(x)) return inventories
def combineInventoriesforFacilityList(base_inventory, inventory_dict, facility_id_list, filter_for_LCI=True, remove_overlap=True): """Combines stewi inventories for all facilities present in a given facility id list The base_inventory must be in the inventory_dict :param base_inventory: reference inventory e.g. "TRI" :param inventory_dict: dictionary of inventories and years, e.g. {"TRI":"2014","NEI":"2014","RCRAInfo":"2015"} :param facility_id_list: list of facility ids from base_inventory e.g. ['99501MPCLS1076O', '99501NCHRG459WB', '99515VNWTR590E1'] :param filter_for_LCI: boolean. Passes through to stewi to filter_for_LCI. See stewi. :param remove_overlap: boolean. Removes overlap across inventories based on preferences defined in globals :return: Flow-By-Facility Combined Format """ inventory_acronyms = list(inventory_dict.keys()) facilitymatches = facilitymatcher.get_matches_for_id_list(base_inventory, facility_id_list, inventory_acronyms) inventories = getInventoriesforFacilityMatches(inventory_dict, facilitymatches, filter_for_LCI, base_inventory) # now remove the records from the base_inventory in the facility list inventories_index_for_base_but_not_in_facilitylist = inventories[ (inventories['Source'] == base_inventory) & (~inventories['FacilityID'].isin(facility_id_list))].index inventories = inventories.drop(inventories_index_for_base_but_not_in_facilitylist, axis=0) # Add in chemical matches inventories = addChemicalMatches(inventories) # Aggregate and remove overlap if requested if remove_overlap: inventories = aggregate_and_remove_overlap(inventories) inventories = addBaseInventoryIDs(inventories, facilitymatches, base_inventory) return inventories
def reassign_airplane_emissions(df, year, NAICS_level_value): """ Reassigns emissions from airplanes to NAICS associated with air transportation instead of the NAICS assigned to airports :param df: a dataframe of emissions and mapped faciliites from stewicombo :param year: year as str :param NAICS_level_value: desired NAICS aggregation level, using sector_level_key, should match target_sector_level :return: df """ import stewi from stewicombo.overlaphandler import remove_default_flow_overlaps from stewicombo.globals import addChemicalMatches # subtract emissions for air transportation from airports in NEI airport_NAICS = '4881' air_transportation_SCC = '2275020000' air_transportation_naics = '481111' log.info('Reassigning emissions from air transportation from airports') # obtain and prepare SCC dataset df_airplanes = stewi.getInventory('NEI', year, stewiformat='flowbyprocess') df_airplanes = df_airplanes[df_airplanes['Process'] == air_transportation_SCC] df_airplanes['Source'] = 'NEI' df_airplanes = addChemicalMatches(df_airplanes) df_airplanes = remove_default_flow_overlaps(df_airplanes, SCC=True) df_airplanes.drop(columns=['Process'], inplace=True) facility_mapping_air = df[['FacilityID', 'NAICS']] facility_mapping_air.drop_duplicates(keep='first', inplace=True) df_airplanes = df_airplanes.merge(facility_mapping_air, how='left', on='FacilityID') df_airplanes['Year'] = year df_airplanes = df_airplanes[df_airplanes['NAICS'].str[0:len(airport_NAICS)] == airport_NAICS] # subtract airplane emissions from airport NAICS at individual facilities df_planeemissions = df_airplanes[['FacilityID', 'FlowName', 'FlowAmount']] df_planeemissions.rename(columns={'FlowAmount': 'PlaneEmissions'}, inplace=True) df = df.merge(df_planeemissions, how='left', on=['FacilityID', 'FlowName']) df[['PlaneEmissions']] = df[['PlaneEmissions']].fillna(value=0) df['FlowAmount'] = df['FlowAmount'] - df['PlaneEmissions'] df.drop(columns=['PlaneEmissions'], inplace=True) # add airplane emissions under air transport NAICS df_airplanes.loc[:, 'NAICS_lvl'] = \ air_transportation_naics[0:NAICS_level_value] df = pd.concat([df, df_airplanes], ignore_index=True) return df
def reassign_airplane_emissions(df, year, NAICS_level_value): import stewi from stewicombo.overlaphandler import remove_default_flow_overlaps from stewicombo.globals import addChemicalMatches ## subtract emissions for air transportation from airports in NEI airport_NAICS = '4881' air_transportation_SCC = '2275020000' air_transportation_naics = '481111' log.info('Reassigning emissions from air transportation from airports') # obtain and prepare SCC dataset df_airplanes = stewi.getInventory('NEI', year, stewiformat='flowbySCC') df_airplanes = df_airplanes[df_airplanes['SCC'] == air_transportation_SCC] df_airplanes['Source'] = 'NEI' df_airplanes = addChemicalMatches(df_airplanes) df_airplanes = remove_default_flow_overlaps(df_airplanes, SCC=True) df_airplanes.drop(columns=['SCC'], inplace=True) facility_mapping_air = df[['FacilityID', 'NAICS']] facility_mapping_air.drop_duplicates(keep='first', inplace=True) df_airplanes = df_airplanes.merge(facility_mapping_air, how='left', on='FacilityID') df_airplanes['Year'] = year df_airplanes = df_airplanes[df_airplanes['NAICS'].str[0:len(airport_NAICS)] == airport_NAICS] # subtract airplane emissions from airport NAICS at individual facilities df_planeemissions = df_airplanes[['FacilityID', 'FlowName', 'FlowAmount']] df_planeemissions.rename(columns={'FlowAmount': 'PlaneEmissions'}, inplace=True) df = df.merge(df_planeemissions, how='left', on=['FacilityID', 'FlowName']) df[['PlaneEmissions']] = df[['PlaneEmissions']].fillna(value=0) df['FlowAmount'] = df['FlowAmount'] - df['PlaneEmissions'] df.drop(columns=['PlaneEmissions'], inplace=True) # add airplane emissions under air transport NAICS df_airplanes.loc[:, 'NAICS_lvl'] = air_transportation_naics[ 0:NAICS_level_value] df = pd.concat([df, df_airplanes], ignore_index=True) return df
def stewicombo_to_sector(inventory_dict, NAICS_level, geo_scale, compartments): """ Returns emissions from stewicombo in fbs format :param inventory_dict: a dictionary of inventory types and years (e.g., {'NEI':'2017', 'TRI':'2017'}) :param NAICS_level: desired NAICS aggregation level, using sector_level_key, should match target_sector_level :param geo_scale: desired geographic aggregation level ('national', 'state', 'county'), should match target_geoscale :param compartments: list of compartments to include (e.g., 'water', 'air', 'soil'), use None to include all compartments """ from stewi.globals import output_dir as stw_output_dir from stewi.globals import weighted_average import stewi import stewicombo import facilitymatcher from stewicombo.overlaphandler import remove_default_flow_overlaps from stewicombo.globals import addChemicalMatches from facilitymatcher import output_dir as fm_output_dir NAICS_level_value = sector_level_key[NAICS_level] ## run stewicombo to combine inventories, filter for LCI, remove overlap df = stewicombo.combineFullInventories(inventory_dict, filter_for_LCI=True, remove_overlap=True, compartments=compartments) df.drop(columns=['SRS_CAS', 'SRS_ID', 'FacilityIDs_Combined'], inplace=True) facility_mapping = pd.DataFrame() # load facility data from stewi output directory, keeping only the facility IDs, and geographic information inventory_list = list(inventory_dict.keys()) for i in range(len(inventory_dict)): # define inventory name as inventory type + inventory year (e.g., NEI_2017) inventory_name = inventory_list[i] + '_' + list( inventory_dict.values())[i] facilities = pd.read_csv(stw_output_dir + 'facility/' + inventory_name + '.csv', usecols=['FacilityID', 'State', 'County'], dtype={'FacilityID': str}) if len(facilities[facilities.duplicated(subset='FacilityID', keep=False)]) > 0: log.info('Duplicate facilities in ' + inventory_name + ' - keeping first listed') facilities.drop_duplicates(subset='FacilityID', keep='first', inplace=True) facility_mapping = facility_mapping.append(facilities) # Apply FIPS to facility locations facility_mapping = apply_county_FIPS(facility_mapping) ## merge dataframes to assign facility information based on facility IDs df = pd.merge(df, facility_mapping, how='left', on='FacilityID') ## Access NAICS From facility matcher and assign based on FRS_ID all_NAICS = facilitymatcher.get_FRS_NAICSInfo_for_facility_list( frs_id_list=None, inventories_of_interest_list=inventory_list) all_NAICS = all_NAICS.loc[all_NAICS['PRIMARY_INDICATOR'] == 'PRIMARY'] all_NAICS.drop(columns=['PRIMARY_INDICATOR'], inplace=True) all_NAICS = naics_expansion(all_NAICS) if len(all_NAICS[all_NAICS.duplicated(subset=['FRS_ID', 'Source'], keep=False)]) > 0: log.info('Duplicate primary NAICS reported - keeping first') all_NAICS.drop_duplicates(subset=['FRS_ID', 'Source'], keep='first', inplace=True) df = pd.merge(df, all_NAICS, how='left', on=['FRS_ID', 'Source']) # add levelized NAICS code prior to aggregation df['NAICS_lvl'] = df['NAICS'].str[0:NAICS_level_value] ## subtract emissions for air transportation from airports in NEI airport_NAICS = '4881' air_transportation_SCC = '2275020000' air_transportation_naics = '481111' if 'NEI' in inventory_list: log.info('Reassigning emissions from air transportation from airports') # obtain and prepare SCC dataset df_airplanes = stewi.getInventory('NEI', inventory_dict['NEI'], stewiformat='flowbySCC') df_airplanes = df_airplanes[df_airplanes['SCC'] == air_transportation_SCC] df_airplanes['Source'] = 'NEI' df_airplanes = addChemicalMatches(df_airplanes) df_airplanes = remove_default_flow_overlaps(df_airplanes, SCC=True) df_airplanes.drop(columns=['SCC'], inplace=True) facility_mapping_air = df[['FacilityID', 'NAICS']] facility_mapping_air.drop_duplicates(keep='first', inplace=True) df_airplanes = df_airplanes.merge(facility_mapping_air, how='left', on='FacilityID') df_airplanes['Year'] = inventory_dict['NEI'] df_airplanes = df_airplanes[ df_airplanes['NAICS'].str[0:len(airport_NAICS)] == airport_NAICS] # subtract airplane emissions from airport NAICS at individual facilities df_planeemissions = df_airplanes[[ 'FacilityID', 'FlowName', 'FlowAmount' ]] df_planeemissions.rename(columns={'FlowAmount': 'PlaneEmissions'}, inplace=True) df = df.merge(df_planeemissions, how='left', on=['FacilityID', 'FlowName']) df[['PlaneEmissions']] = df[['PlaneEmissions']].fillna(value=0) df['FlowAmount'] = df['FlowAmount'] - df['PlaneEmissions'] df.drop(columns=['PlaneEmissions'], inplace=True) # add airplane emissions under air transport NAICS df_airplanes.loc[:, 'NAICS_lvl'] = air_transportation_naics[ 0:NAICS_level_value] df = pd.concat([df, df_airplanes], ignore_index=True) # update location to appropriate geoscale prior to aggregating df.dropna(subset=['Location'], inplace=True) df['Location'] = df['Location'].astype(str) df = update_geoscale(df, geo_scale) # assign grouping variables based on desired geographic aggregation level grouping_vars = ['NAICS_lvl', 'FlowName', 'Compartment', 'Location'] # aggregate by NAICS code, FlowName, compartment, and geographic level fbs = df.groupby(grouping_vars).agg({ 'FlowAmount': 'sum', 'Year': 'first', 'Unit': 'first' }) # add reliability score fbs['DataReliability'] = weighted_average(df, 'ReliabilityScore', 'FlowAmount', grouping_vars) fbs.reset_index(inplace=True) # apply flow mapping fbs = map_elementary_flows(fbs, inventory_list) # rename columns to match flowbysector format fbs = fbs.rename(columns={"NAICS_lvl": "SectorProducedBy"}) # add hardcoded data, depending on the source data, some of these fields may need to change fbs['Class'] = 'Chemicals' fbs['SectorConsumedBy'] = 'None' fbs['SectorSourceName'] = 'NAICS_2012_Code' fbs['FlowType'] = 'ELEMENTARY_FLOW' fbs = assign_fips_location_system(fbs, list(inventory_dict.values())[0]) # add missing flow by sector fields fbs = add_missing_flow_by_fields(fbs, flow_by_sector_fields) # sort dataframe and reset index fbs = fbs.sort_values(list( flow_by_sector_fields.keys())).reset_index(drop=True) return fbs