def test_diag(): # Test `Dense`. a = np.random.randn(5, 3) yield assert_allclose, B.diag(Dense(a)), np.diag(a) # Test `Diagonal`. yield assert_allclose, B.diag(Diagonal([1, 2, 3])), [1, 2, 3] yield assert_allclose, B.diag(Diagonal([1, 2, 3], 2)), [1, 2] yield assert_allclose, B.diag(Diagonal([1, 2, 3], 4)), [1, 2, 3, 0] # Test `LowRank`. b = np.random.randn(10, 3) yield assert_allclose, B.diag(LowRank(left=a, right=a)), np.diag(a.dot(a.T)) yield assert_allclose, B.diag(LowRank(left=a, right=b)), np.diag(a.dot(b.T)) yield assert_allclose, B.diag(LowRank(left=b, right=b)), np.diag(b.dot(b.T)) # Test `Constant`. yield assert_allclose, B.diag(Constant(1, rows=3, cols=5)), np.ones(3) # Test `Woodbury`. yield assert_allclose, \ B.diag(Woodbury(Diagonal([1, 2, 3], rows=5, cols=10), LowRank(left=a, right=b))), \ np.diag(a.dot(b.T) + np.concatenate((np.diag([1, 2, 3, 0, 0]), np.zeros((5, 5))), axis=1))
def test_inverse_and_logdet(): # Test `Dense`. a = np.random.randn(3, 3) a = Dense(a.dot(a.T)) allclose(B.matmul(a, B.inverse(a)), np.eye(3)) allclose(B.matmul(B.inverse(a), a), np.eye(3)) allclose(B.logdet(a), np.log(np.linalg.det(to_np(a)))) # Test `Diagonal`. d = Diagonal(np.array([1, 2, 3])) allclose(B.matmul(d, B.inverse(d)), np.eye(3)) allclose(B.matmul(B.inverse(d), d), np.eye(3)) allclose(B.logdet(d), np.log(np.linalg.det(to_np(d)))) assert B.shape(B.inverse(Diagonal(np.array([1, 2]), rows=2, cols=4))) == (4, 2) # Test `Woodbury`. a = np.random.randn(3, 2) b = np.random.randn(2, 2) + 1e-2 * np.eye(2) wb = d + LowRank(left=a, middle=b.dot(b.T)) for _ in range(4): allclose(B.matmul(wb, B.inverse(wb)), np.eye(3)) allclose(B.matmul(B.inverse(wb), wb), np.eye(3)) allclose(B.logdet(wb), np.log(np.linalg.det(to_np(wb)))) wb = B.inverse(wb) # Test `LowRank`. with pytest.raises(RuntimeError): B.inverse(wb.lr) with pytest.raises(RuntimeError): B.logdet(wb.lr)
def test_dtype(): # Test `Dense`. assert B.dtype(Dense(np.array([[1]]))) == np.int64 assert B.dtype(Dense(np.array([[1.0]]))) == np.float64 # Test `Diagonal`. diag_int = Diagonal(np.array([1])) diag_float = Diagonal(np.array([1.0])) assert B.dtype(diag_int) == np.int64 assert B.dtype(diag_float) == np.float64 # Test `LowRank`. lr_int = LowRank(left=np.array([[1]]), right=np.array([[2]]), middle=np.array([[3]])) lr_float = LowRank(left=np.array([[1.0]]), right=np.array([[2.0]]), middle=np.array([[3.0]])) assert B.dtype(lr_int) == np.int64 assert B.dtype(lr_float) == np.float64 # Test `Constant`. assert B.dtype(Constant(1, rows=1)) == int assert B.dtype(Constant(1.0, rows=1)) == float # Test `Woodbury`. assert B.dtype(Woodbury(diag_int, lr_int)) == np.int64 assert B.dtype(Woodbury(diag_float, lr_float)) == np.float64
def test_inverse_and_logdet(): # Test `Dense`. a = np.random.randn(3, 3) a = Dense(a.dot(a.T)) yield assert_allclose, B.matmul(a, B.inverse(a)), np.eye(3) yield assert_allclose, B.matmul(B.inverse(a), a), np.eye(3) yield assert_allclose, B.logdet(a), np.log(np.linalg.det(dense(a))) # Test `Diagonal`. d = Diagonal([1, 2, 3]) yield assert_allclose, B.matmul(d, B.inverse(d)), np.eye(3) yield assert_allclose, B.matmul(B.inverse(d), d), np.eye(3) yield assert_allclose, B.logdet(d), np.log(np.linalg.det(dense(d))) yield eq, B.shape(B.inverse(Diagonal([1, 2], rows=2, cols=4))), (4, 2) # Test `Woodbury`. a = np.random.randn(3, 2) b = np.random.randn(2, 2) + 1e-2 * np.eye(2) wb = d + LowRank(left=a, middle=b.dot(b.T)) for _ in range(4): yield assert_allclose, B.matmul(wb, B.inverse(wb)), np.eye(3) yield assert_allclose, B.matmul(B.inverse(wb), wb), np.eye(3) yield assert_allclose, B.logdet(wb), np.log(np.linalg.det(dense(wb))) wb = B.inverse(wb) # Test `LowRank`. yield raises, RuntimeError, lambda: B.inverse(wb.lr) yield raises, RuntimeError, lambda: B.logdet(wb.lr)
def test_dtype(): # Test `Dense`. yield eq, B.dtype(Dense(np.array([[1]]))), int yield eq, B.dtype(Dense(np.array([[1.0]]))), float # Test `Diagonal`. diag_int = Diagonal(np.array([1])) diag_float = Diagonal(np.array([1.0])) yield eq, B.dtype(diag_int), int yield eq, B.dtype(diag_float), float # Test `LowRank`. lr_int = LowRank(left=np.array([[1]]), right=np.array([[2]]), middle=np.array([[3]])) lr_float = LowRank(left=np.array([[1.0]]), right=np.array([[2.0]]), middle=np.array([[3.0]])) yield eq, B.dtype(lr_int), int yield eq, B.dtype(lr_float), float # Test `Constant`. yield eq, B.dtype(Constant(1, rows=1)), int yield eq, B.dtype(Constant(1.0, rows=1)), float # Test `Woodbury`. yield eq, B.dtype(Woodbury(diag_int, lr_int)), int yield eq, B.dtype(Woodbury(diag_float, lr_float)), float
def test_ratio(): a, b = np.random.randn(4, 4), np.random.randn(4, 4) a, b = Dense(a.dot(a.T)), Dense(b.dot(b.T)) d, e = Diagonal(B.diag(a)), Diagonal(B.diag(b)) c = np.random.randn(3, 3) lr = LowRank(left=np.random.randn(4, 3), middle=c.dot(c.T)) allclose(B.ratio(a, b), np.trace(np.linalg.solve(to_np(b), to_np(a)))) allclose(B.ratio(lr, b), np.trace(np.linalg.solve(to_np(b), to_np(lr)))) allclose(B.ratio(d, e), np.trace(np.linalg.solve(to_np(e), to_np(d))))
def test_dense(): a = np.random.randn(5, 3) allclose(Dense(a), a) # Extensively test Diagonal. allclose(Diagonal(np.array([1, 2])), np.array([[1, 0], [0, 2]])) allclose(Diagonal(np.array([1, 2]), 3), np.array([[1, 0, 0], [0, 2, 0], [0, 0, 0]])) allclose(Diagonal(np.array([1, 2]), 1), np.array([[1]])) allclose(Diagonal(np.array([1, 2]), 3, 3), np.array([[1, 0, 0], [0, 2, 0], [0, 0, 0]])) allclose(Diagonal(np.array([1, 2]), 2, 3), np.array([[1, 0, 0], [0, 2, 0]])) allclose(Diagonal(np.array([1, 2]), 3, 2), np.array([[1, 0], [0, 2], [0, 0]])) allclose(Diagonal(np.array([1, 2]), 1, 3), np.array([[1, 0, 0]])) allclose(Diagonal(np.array([1, 2]), 3, 1), np.array([[1], [0], [0]])) # Test low-rank matrices. left = np.random.randn(5, 3) right = np.random.randn(10, 3) middle = np.random.randn(3, 3) lr = LowRank(left=left, right=right, middle=middle) allclose(lr, left.dot(middle).dot(right.T)) # Test Woodbury matrices. diag = Diagonal(np.array([1, 2, 3, 4]), 5, 10) wb = Woodbury(diag=diag, lr=lr) allclose(wb, to_np(diag) + to_np(lr))
def test_qf(): # Generate some test inputs. b, c = np.random.randn(5, 3), np.random.randn(5, 3) # Generate some matrices to test. a = np.random.randn(5, 5) a = Dense(a.dot(a.T)) d = Diagonal(B.diag(a)) e = np.random.randn(2, 2) wb = d + LowRank(left=np.random.randn(5, 2), middle=e.dot(e.T)) for x in [a, d, wb]: allclose(B.qf(x, b), np.linalg.solve(to_np(x), b).T.dot(b)) allclose(B.qf(x, b, b), B.qf(x, b)) allclose(B.qf(x, b, c), np.linalg.solve(to_np(x), b).T.dot(c)) allclose(B.qf_diag(x, b), np.diag(np.linalg.solve(to_np(x), b).T.dot(b))) allclose(B.qf_diag(x, b, b), B.qf_diag(x, b, b)) allclose(B.qf_diag(x, b, c), np.diag(np.linalg.solve(to_np(x), b).T.dot(c))) # Test `LowRank`. lr = LowRank(np.random.randn(5, 3)) with pytest.raises(RuntimeError): B.qf(lr, b) with pytest.raises(RuntimeError): B.qf(lr, b, c) with pytest.raises(RuntimeError): B.qf_diag(lr, b) with pytest.raises(RuntimeError): B.qf_diag(lr, b, c)
def test_equality(): # Test `Dense.` a = Dense(np.random.randn(4, 2)) allclose(a == a, to_np(a) == to_np(a)) # Test `Diagonal`. d = Diagonal(np.random.randn(4)) allclose(d == d, B.diag(d) == B.diag(d)) # Test `LowRank`. lr = LowRank(left=np.random.randn(4, 2), middle=np.random.randn(2, 2)) allclose(lr == lr, (lr.l == lr.l, lr.m == lr.m, lr.r == lr.r)) # Test `Woodbury`. allclose((lr + d) == (lr + d), (lr == lr, d == d)) # Test `Constant`. c1 = Constant.from_(1, a) c1_2 = Constant(1, 4, 3) c2 = Constant.from_(2, a) assert c1 == c1 assert c1 != c1_2 assert c1 != c2 # Test `One`. one1 = One(np.float64, 4, 2) one2 = One(np.float64, 4, 3) assert one1 == one1 assert one1 != one2 # Test `Zero`. zero1 = Zero(np.float64, 4, 2) zero2 = Zero(np.float64, 4, 3) assert zero1 == zero1 assert zero1 != zero2
def test_arithmetic_and_shapes(): a = Dense(np.random.randn(4, 3)) d = Diagonal(np.array([1.0, 2.0, 3.0]), rows=4, cols=3) lr = LowRank(left=np.random.randn(4, 2), right=np.random.randn(3, 2), middle=np.random.randn(2, 2)) zero = Zero.from_(a) one = One.from_(a) constant = Constant.from_(2.0, a) wb = d + lr # Aggregate all matrices. candidates = [a, d, lr, wb, constant, one, zero, 2, 1, 0, 2.0, 1.0, 0.0] # Check division. allclose(a.__div__(5.0), to_np(a) / 5.0) allclose(a.__rdiv__(5.0), 5.0 / to_np(a)) allclose(a.__truediv__(5.0), to_np(a) / 5.0) allclose(a.__rtruediv__(5.0), 5.0 / to_np(a)) allclose(B.divide(a, 5.0), to_np(a) / 5.0) allclose(B.divide(a, a), B.ones(to_np(a))) # Check shapes. for m in candidates: assert B.shape(a) == (4, 3) # Check interactions. for m1, m2 in product(candidates, candidates): allclose(m1 * m2, to_np(m1) * to_np(m2)) allclose(m1 + m2, to_np(m1) + to_np(m2)) allclose(m1 - m2, to_np(m1) - to_np(m2))
def test_normal_sampling(): # Test sampling and dtype conversion. dist = Normal(3 * np.eye(200, dtype=np.integer)) assert np.abs(np.std(dist.sample(1000))**2 - 3) <= 5e-2, 'full' assert np.abs(np.std(dist.sample(1000, noise=2))**2 - 5) <= 5e-2, 'full 2' dist = Normal(Diagonal(3 * np.ones(200, dtype=np.integer))) assert np.abs(np.std(dist.sample(1000))**2 - 3) <= 5e-2, 'diag' assert np.abs(np.std(dist.sample(1000, noise=2))**2 - 5) <= 5e-2, 'diag 2' dist = Normal(UniformlyDiagonal(3, 200)) assert np.abs(np.std(dist.sample(1000))**2 - 3) <= 5e-2, 'unif' assert np.abs(np.std(dist.sample(1000, noise=2))**2 - 5) <= 5e-2, 'unif 2' # Test `__str__` and `__repr__`. assert str(dist) == RandomVector.__str__(dist) assert repr(dist) == RandomVector.__repr__(dist) # Test zero mean determination. assert Normal(np.eye(3))._zero_mean assert not Normal(np.eye(3), np.random.randn(3, 1))._zero_mean x = np.random.randn(3) assert GP(1)(x)._zero_mean assert not GP(1, 1)(x)._zero_mean assert GP(1, 0)(x)._zero_mean
def test_arithmetic_and_shapes(): a = Dense(np.random.randn(4, 3)) d = Diagonal(np.array([1.0, 2.0, 3.0]), rows=4, cols=3) lr = LowRank(left=np.random.randn(4, 2), right=np.random.randn(3, 2), middle=np.random.randn(2, 2)) zero = Zero.from_(a) one = One.from_(a) constant = Constant.from_(2.0, a) wb = d + lr # Aggregate all matrices. candidates = [a, d, lr, wb, constant, one, zero, 2, 1, 0] # Check division. yield assert_allclose, a.__div__(5.0), dense(a) / 5.0 yield assert_allclose, a.__truediv__(5.0), dense(a) / 5.0 # Check shapes. for m in candidates: yield eq, B.shape(a), (4, 3) # Check interactions. for m1, m2 in product(candidates, candidates): yield assert_allclose, m1 * m2, dense(m1) * dense(m2) yield assert_allclose, m1 + m2, dense(m1) + dense(m2) yield assert_allclose, m1 - m2, dense(m1) - dense(m2)
def test_qf(): # Generate some test inputs. b, c = np.random.randn(5, 3), np.random.randn(5, 3) # Generate some matrices to test. a = np.random.randn(5, 5) a = Dense(a.dot(a.T)) d = Diagonal(B.diag(a)) e = np.random.randn(2, 2) wb = d + LowRank(left=np.random.randn(5, 2), middle=e.dot(e.T)) for x in [a, d, wb]: yield assert_allclose, B.qf(x, b), \ np.linalg.solve(dense(x), b).T.dot(b) yield assert_allclose, B.qf(x, b, c), \ np.linalg.solve(dense(x), b).T.dot(c) yield assert_allclose, B.qf_diag(x, b), \ np.diag(np.linalg.solve(dense(x), b).T.dot(b)) yield assert_allclose, B.qf_diag(x, b, c), \ np.diag(np.linalg.solve(dense(x), b).T.dot(c)) # Test `LowRank`. lr = LowRank(np.random.randn(5, 3)) yield raises, RuntimeError, lambda: B.qf(lr, b) yield raises, RuntimeError, lambda: B.qf(lr, b, c) yield raises, RuntimeError, lambda: B.qf_diag(lr, b) yield raises, RuntimeError, lambda: B.qf_diag(lr, b, c)
def test_equality(): # Test `Dense.` a = Dense(np.random.randn(4, 2)) yield assert_allclose, a == a, dense(a) == dense(a) # Test `Diagonal`. d = Diagonal(np.random.randn(4)) yield assert_allclose, d == d, B.diag(d) == B.diag(d) # Test `LowRank`. lr = LowRank(left=np.random.randn(4, 2), middle=np.random.randn(2, 2)) yield assert_allclose, lr == lr, (lr.l == lr.l, lr.m == lr.m, lr.r == lr.r) # Test `Woodbury`. yield assert_allclose, (lr + d) == (lr + d), (lr == lr, d == d) # Test `Constant`. c1 = Constant.from_(1, a) c1_2 = Constant(1, 4, 3) c2 = Constant.from_(2, a) yield eq, c1, c1 yield neq, c1, c1_2 yield neq, c1, c2 # Test `One`. one1 = One(np.float64, 4, 2) one2 = One(np.float64, 4, 3) yield eq, one1, one1 yield neq, one1, one2 # Test `Zero`. zero1 = Zero(np.float64, 4, 2) zero2 = Zero(np.float64, 4, 3) yield eq, zero1, zero1 yield neq, zero1, zero2
def test_dense(): a = np.random.randn(5, 3) yield assert_allclose, dense(Dense(a)), a yield assert_allclose, dense(a), a # Extensively test Diagonal. yield assert_allclose, \ dense(Diagonal([1, 2])), \ np.array([[1, 0], [0, 2]]) yield assert_allclose, \ dense(Diagonal([1, 2], 3)), \ np.array([[1, 0, 0], [0, 2, 0], [0, 0, 0]]) yield assert_allclose, \ dense(Diagonal([1, 2], 1)), \ np.array([[1]]) yield assert_allclose, \ dense(Diagonal([1, 2], 3, 3)), \ np.array([[1, 0, 0], [0, 2, 0], [0, 0, 0]]) yield assert_allclose, \ dense(Diagonal([1, 2], 2, 3)), \ np.array([[1, 0, 0], [0, 2, 0]]) yield assert_allclose, \ dense(Diagonal([1, 2], 3, 2)), \ np.array([[1, 0], [0, 2], [0, 0]]) yield assert_allclose, \ dense(Diagonal([1, 2], 1, 3)), \ np.array([[1, 0, 0]]) yield assert_allclose, \ dense(Diagonal([1, 2], 3, 1)), \ np.array([[1], [0], [0]]) # Test low-rank matrices. left = np.random.randn(5, 3) right = np.random.randn(10, 3) middle = np.random.randn(3, 3) lr = LowRank(left=left, right=right, middle=middle) yield assert_allclose, dense(lr), left.dot(middle).dot(right.T) # Test Woodbury matrices. diag = Diagonal([1, 2, 3, 4], 5, 10) wb = Woodbury(diag=diag, lr=lr) yield assert_allclose, dense(wb), dense(diag) + dense(lr)
def test_block_matrix(): dt = np.float64 # Check correctness. rows = [[np.random.randn(4, 3), np.random.randn(4, 5)], [np.random.randn(6, 3), np.random.randn(6, 5)]] allclose(B.block_matrix(*rows), B.concat2d(*rows)) # Check that grid is checked correctly. assert type( B.block_matrix([Zero(dt, 3, 7), Zero(dt, 3, 4)], [Zero(dt, 4, 5), Zero(dt, 4, 6)])) == Dense with pytest.raises(ValueError): B.block_matrix([Zero(dt, 5, 5), Zero(dt, 3, 6)], [Zero(dt, 2, 5), Zero(dt, 4, 6)]) # Test zeros. res = B.block_matrix([Zero(dt, 3, 5), Zero(dt, 3, 6)], [Zero(dt, 4, 5), Zero(dt, 4, 6)]) assert type(res) == Zero allclose(res, Zero(dt, 7, 11)) # Test ones. res = B.block_matrix([One(dt, 3, 5), One(dt, 3, 6)], [One(dt, 4, 5), One(dt, 4, 6)]) assert type(res) == One allclose(res, One(dt, 7, 11)) # Test diagonal. res = B.block_matrix( [Diagonal(np.array([1, 2])), Zero(dt, 2, 3)], [Zero(dt, 3, 2), Diagonal(np.array([3, 4, 5]))]) assert type(res) == Diagonal allclose(res, Diagonal(np.array([1, 2, 3, 4, 5]))) # Check that all blocks on the diagonal must be diagonal or zero. assert type( B.block_matrix([Diagonal(np.array([1, 2])), Zero(dt, 2, 3)], [Zero(dt, 3, 2), One(dt, 3)])) == Dense assert type( B.block_matrix([Diagonal(np.array([1, 2])), Zero(dt, 2, 3)], [Zero(dt, 3, 2), Zero(dt, 3)])) == Diagonal # Check that all blocks on the diagonal must be square. assert type( B.block_matrix([Diagonal(np.array([1, 2])), Zero(dt, 2, 4)], [Zero(dt, 3, 2), Zero(dt, 3, 4)])) == Dense # Check that all other blocks must be zero. assert type( B.block_matrix( [Diagonal(np.array([1, 2])), One(dt, 2, 3)], [Zero(dt, 3, 2), Diagonal(np.array([3, 4, 5]))])) == Dense
def test_root(): # Test `Dense`. a = np.random.randn(5, 5) a = Dense(a.dot(a.T)) yield assert_allclose, a, B.matmul(B.root(a), B.root(a)) # Test `Diagonal`. d = Diagonal(np.array([1, 2, 3, 4, 5])) yield assert_allclose, d, B.matmul(B.root(d), B.root(d))
def test_sum(): a = Dense(np.random.randn(10, 20)) allclose(B.sum(a, axis=0), np.sum(to_np(a), axis=0)) for x in [Diagonal(np.array([1, 2, 3]), rows=3, cols=5), LowRank(left=np.random.randn(5, 3), right=np.random.randn(10, 3), middle=np.random.randn(3, 3))]: allclose(B.sum(x), np.sum(to_np(x))) allclose(B.sum(x, axis=0), np.sum(to_np(x), axis=0)) allclose(B.sum(x, axis=1), np.sum(to_np(x), axis=1)) allclose(B.sum(x, axis=(0, 1)), np.sum(to_np(x), axis=(0, 1)))
def test_transposition(): def compare(a): allclose(B.transpose(a), to_np(a).T) d = Diagonal(np.array([1, 2, 3]), rows=5, cols=10) lr = LowRank(left=np.random.randn(5, 3), right=np.random.randn(10, 3)) compare(Dense(np.random.randn(5, 5))) compare(d) compare(lr) compare(d + lr) compare(Constant(5, rows=4, cols=2))
def test_transposition(): def compare(a): assert_allclose(B.transpose(a), dense(a).T) d = Diagonal([1, 2, 3], rows=5, cols=10) lr = LowRank(left=np.random.randn(5, 3), right=np.random.randn(10, 3)) yield compare, Dense(np.random.randn(5, 5)) yield compare, d yield compare, lr yield compare, d + lr yield compare, Constant(5, rows=4, cols=2)
def test_block_matrix(): dt = np.float64 # Check correctness. rows = [[np.random.randn(4, 3), np.random.randn(4, 5)], [np.random.randn(6, 3), np.random.randn(6, 5)]] yield assert_allclose, B.block_matrix(*rows), B.concat2d(*rows) # Check that grid is checked correctly. yield eq, type( B.block_matrix([Zero(dt, 3, 7), Zero(dt, 3, 4)], [Zero(dt, 4, 5), Zero(dt, 4, 6)])), Dense yield raises, ValueError, \ lambda: B.block_matrix([Zero(dt, 5, 5), Zero(dt, 3, 6)], [Zero(dt, 2, 5), Zero(dt, 4, 6)]) # Test zeros. res = B.block_matrix([Zero(dt, 3, 5), Zero(dt, 3, 6)], [Zero(dt, 4, 5), Zero(dt, 4, 6)]) yield eq, type(res), Zero yield assert_allclose, res, Zero(dt, 7, 11) # Test ones. res = B.block_matrix([One(dt, 3, 5), One(dt, 3, 6)], [One(dt, 4, 5), One(dt, 4, 6)]) yield eq, type(res), One yield assert_allclose, res, One(dt, 7, 11) # Test diagonal. res = B.block_matrix([Diagonal([1, 2]), Zero(dt, 2, 3)], [Zero(dt, 3, 2), Diagonal([3, 4, 5])]) yield eq, type(res), Diagonal yield assert_allclose, res, Diagonal([1, 2, 3, 4, 5]) # Check that all blocks on the diagonal must be diagonal or zero. yield eq, type( B.block_matrix([Diagonal([1, 2]), Zero(dt, 2, 3)], [Zero(dt, 3, 2), One(dt, 3)])), Dense yield eq, type( B.block_matrix([Diagonal([1, 2]), Zero(dt, 2, 3)], [Zero(dt, 3, 2), Zero(dt, 3)])), Diagonal # Check that all blocks on the diagonal must be square. yield eq, type( B.block_matrix([Diagonal([1, 2]), Zero(dt, 2, 4)], [Zero(dt, 3, 2), Zero(dt, 3, 4)])), Dense # Check that all other blocks must be zero. yield eq, type( B.block_matrix([Diagonal([1, 2]), One(dt, 2, 3)], [Zero(dt, 3, 2), Diagonal([3, 4, 5])])), Dense
def test_sample(): a = np.random.randn(3, 3) a = Dense(a.dot(a.T)) b = np.random.randn(2, 2) wb = Diagonal(B.diag(a)) + \ LowRank(left=np.random.randn(3, 2), middle=b.dot(b.T)) # Test `Dense` and `Woodbury`. num_samps = 500000 for cov in [a, wb]: samps = B.sample(cov, num_samps) cov_emp = B.matmul(samps, samps, tr_b=True) / num_samps yield le, np.mean(np.abs(dense(cov_emp) - dense(cov))), 5e-2
def test_sum(): a = Dense(np.random.randn(10, 20)) yield assert_allclose, B.sum(a, axis=0), np.sum(dense(a), axis=0) for x in [ Diagonal(np.array([1, 2, 3]), rows=3, cols=5), LowRank(left=np.random.randn(5, 3), right=np.random.randn(10, 3), middle=np.random.randn(3, 3)) ]: yield assert_allclose, B.sum(x), np.sum(dense(x)) yield assert_allclose, B.sum(x, axis=0), np.sum(dense(x), axis=0) yield assert_allclose, B.sum(x, axis=1), np.sum(dense(x), axis=1) yield assert_allclose, B.sum(x, axis=(0, 1)), np.sum(dense(x), axis=(0, 1))
def test_cholesky(): a = np.random.randn(5, 5) a = a.T.dot(a) # Test `Dense`. yield assert_allclose, np.linalg.cholesky(a), B.cholesky(a) # Test `Diagonal`. d = Diagonal(np.diag(a)) yield assert_allclose, np.linalg.cholesky(dense(d)), B.cholesky(d) # Test `LowRank`. a = np.random.randn(2, 2) lr = LowRank(left=np.random.randn(5, 2), middle=a.dot(a.T)) chol = dense(B.cholesky(lr)) # The Cholesky here is not technically the Cholesky decomposition. Hence # we test this slightly differently. yield assert_allclose, chol.dot(chol.T), lr
def test_normal_sampling(): # Test sampling and dtype conversion. dist = Normal(3 * np.eye(200, dtype=np.integer)) yield le, np.abs(np.std(dist.sample(1000))**2 - 3), 5e-2, 'full' yield le, np.abs(np.std(dist.sample(1000, noise=2)) ** 2 - 5), 5e-2, \ 'full 2' dist = Normal(Diagonal(3 * np.ones(200, dtype=np.integer))) yield le, np.abs(np.std(dist.sample(1000))**2 - 3), 5e-2, 'diag' yield le, np.abs(np.std(dist.sample(1000, noise=2)) ** 2 - 5), 5e-2, \ 'diag 2' dist = Normal(UniformlyDiagonal(3, 200)) yield le, np.abs(np.std(dist.sample(1000))**2 - 3), 5e-2, 'unif' yield le, np.abs(np.std(dist.sample(1000, noise=2)) ** 2 - 5), 5e-2, \ 'unif 2' # Test `__str__` and `__repr__`. yield eq, str(dist), RandomVector.__str__(dist) yield eq, repr(dist), RandomVector.__repr__(dist)
def test_normal_comparison(): # Compare a diagonal normal and dense normal. mean = np.random.randn(3, 1) var_diag = np.random.randn(3)**2 var = np.diag(var_diag) dist1 = Normal(var, mean) dist2 = Normal(Diagonal(var_diag), mean) samples = dist1.sample(100) yield ok, allclose(dist1.logpdf(samples), dist2.logpdf(samples)), 'logpdf' yield ok, allclose(dist1.entropy(), dist2.entropy()), 'entropy' yield ok, allclose(dist1.kl(dist2), 0.), 'kl 1' yield ok, allclose(dist1.kl(dist1), 0.), 'kl 2' yield ok, allclose(dist2.kl(dist2), 0.), 'kl 3' yield ok, allclose(dist2.kl(dist1), 0.), 'kl 4' yield le, dist1.w2(dist1), 5e-4, 'w2 1' yield le, dist1.w2(dist2), 5e-4, 'w2 2' yield le, dist2.w2(dist1), 5e-4, 'w2 3' yield le, dist2.w2(dist2), 5e-4, 'w2 4' # Check a uniformly diagonal normal and dense normal. mean = np.random.randn(3, 1) var_diag_scale = np.random.randn()**2 var = np.eye(3) * var_diag_scale dist1 = Normal(var, mean) dist2 = Normal(UniformlyDiagonal(var_diag_scale, 3), mean) samples = dist1.sample(100) yield ok, allclose(dist1.logpdf(samples), dist2.logpdf(samples)), 'logpdf' yield ok, allclose(dist1.entropy(), dist2.entropy()), 'entropy' yield ok, allclose(dist1.kl(dist2), 0.), 'kl 1' yield ok, allclose(dist1.kl(dist1), 0.), 'kl 2' yield ok, allclose(dist2.kl(dist2), 0.), 'kl 3' yield ok, allclose(dist2.kl(dist1), 0.), 'kl 4' yield le, dist1.w2(dist1), 5e-4, 'w2 1' yield le, dist1.w2(dist2), 5e-4, 'w2 2' yield le, dist2.w2(dist1), 5e-4, 'w2 3' yield le, dist2.w2(dist2), 5e-4, 'w2 4'
def test_normal_comparison(): # Compare a diagonal normal and dense normal. mean = np.random.randn(3, 1) var_diag = np.random.randn(3)**2 var = np.diag(var_diag) dist1 = Normal(var, mean) dist2 = Normal(Diagonal(var_diag), mean) samples = dist1.sample(100) allclose(dist1.logpdf(samples), dist2.logpdf(samples), desc='logpdf') allclose(dist1.entropy(), dist2.entropy(), desc='entropy') allclose(dist1.kl(dist2), 0.) allclose(dist1.kl(dist1), 0.) allclose(dist2.kl(dist2), 0.) allclose(dist2.kl(dist1), 0.) assert dist1.w2(dist1) <= 1e-3 assert dist1.w2(dist2) <= 1e-3 assert dist2.w2(dist1) <= 1e-3 assert dist2.w2(dist2) <= 1e-3 # Check a uniformly diagonal normal and dense normal. mean = np.random.randn(3, 1) var_diag_scale = np.random.randn()**2 var = np.eye(3) * var_diag_scale dist1 = Normal(var, mean) dist2 = Normal(UniformlyDiagonal(var_diag_scale, 3), mean) samples = dist1.sample(100) allclose(dist1.logpdf(samples), dist2.logpdf(samples), desc='logpdf') allclose(dist1.entropy(), dist2.entropy(), desc='entropy') allclose(dist1.kl(dist2), 0.) allclose(dist1.kl(dist1), 0.) allclose(dist2.kl(dist2), 0.) allclose(dist2.kl(dist1), 0.) assert dist1.w2(dist1) <= 1e-3 assert dist1.w2(dist2) <= 1e-3 assert dist2.w2(dist1) <= 1e-3 assert dist2.w2(dist2) <= 1e-3
def test_schur(): # Test `Dense`. a = np.random.randn(5, 10) b = np.random.randn(3, 5) c = np.random.randn(3, 3) d = np.random.randn(3, 10) c = c.dot(c.T) yield ok, allclose(B.schur(a, b, c, d), a - np.linalg.solve(c.T, b).T.dot(d)), 'n n n n' # Test `Woodbury`. # The inverse of the Woodbury matrix already properly tests the method for # Woodbury matrices. c = np.random.randn(2, 2) c = Diagonal(np.array([1, 2, 3])) + \ LowRank(left=np.random.randn(3, 2), middle=c.dot(c.T)) yield ok, allclose(B.schur(a, b, c, d), a - np.linalg.solve(dense(c).T, b).T.dot(d)), 'n n w n' # Test all combinations of `Woodbury`, `LowRank`, and `Diagonal`. a = np.random.randn(2, 2) a = Diagonal(np.array([4, 5, 6, 7, 8]), rows=5, cols=10) + \ LowRank(left=np.random.randn(5, 2), right=np.random.randn(10, 2), middle=a.dot(a.T)) b = np.random.randn(2, 2) b = Diagonal(np.array([9, 10, 11]), rows=3, cols=5) + \ LowRank(left=c.lr.left, right=a.lr.left, middle=b.dot(b.T)) d = np.random.randn(2, 2) d = Diagonal(np.array([12, 13, 14]), rows=3, cols=10) + \ LowRank(left=c.lr.right, right=a.lr.right, middle=d.dot(d.T)) # Loop over all combinations. Some of them should be efficient and # representation preserving; all of them should be correct. for ai in [a, a.lr, a.diag]: for bi in [b, b.lr, b.diag]: for ci in [c, c.diag]: for di in [d, d.lr, d.diag]: yield ok, allclose( B.schur(ai, bi, ci, di), dense(ai) - np.linalg.solve(dense(ci).T, dense(bi)).T.dot( dense(di))), '{} {} {} {}'.format(ai, bi, ci, di)
def test_matmul(): diag_square = Diagonal([1, 2], 3) diag_tall = Diagonal([3, 4], 5, 3) diag_wide = Diagonal([5, 6], 2, 3) dense_square = Dense(np.random.randn(3, 3)) dense_tall = Dense(np.random.randn(5, 3)) dense_wide = Dense(np.random.randn(2, 3)) lr = LowRank(left=np.random.randn(5, 2), right=np.random.randn(3, 2), middle=np.random.randn(2, 2)) def compare(a, b): return allclose(B.matmul(a, b), B.matmul(dense(a), dense(b))) # Test `Dense`. yield ok, compare(dense_wide, dense_tall.T), 'dense w x dense t' # Test `LowRank`. yield ok, compare(lr, dense_tall.T), 'lr x dense t' yield ok, compare(dense_wide, lr.T), 'dense w x lr' yield ok, compare(lr, diag_tall.T), 'lr x diag t' yield ok, compare(diag_wide, lr.T), 'diag w x lr' yield ok, compare(lr, lr.T), 'lr x lr' yield ok, compare(lr.T, lr), 'lr x lr (2)' # Test `Diagonal`. # Test multiplication between diagonal matrices. yield ok, compare(diag_square, diag_square.T), 'diag s x diag s' yield ok, compare(diag_tall, diag_square.T), 'diag t x diag s' yield ok, compare(diag_wide, diag_square.T), 'diag w x diag s' yield ok, compare(diag_square, diag_tall.T), 'diag s x diag t' yield ok, compare(diag_tall, diag_tall.T), 'diag t x diag t' yield ok, compare(diag_wide, diag_tall.T), 'diag w x diag t' yield ok, compare(diag_square, diag_wide.T), 'diag s x diag w' yield ok, compare(diag_tall, diag_wide.T), 'diag t x diag w' yield ok, compare(diag_wide, diag_wide.T), 'diag w x diag w' # Test multiplication between diagonal and dense matrices. yield ok, compare(diag_square, dense_square.T), 'diag s x dense s' yield ok, compare(diag_square, dense_tall.T), 'diag s x dense t' yield ok, compare(diag_square, dense_wide.T), 'diag s x dense w' yield ok, compare(diag_tall, dense_square.T), 'diag t x dense s' yield ok, compare(diag_tall, dense_tall.T), 'diag t x dense t' yield ok, compare(diag_tall, dense_wide.T), 'diag t x dense w' yield ok, compare(diag_wide, dense_square.T), 'diag w x dense s' yield ok, compare(diag_wide, dense_tall.T), 'diag w x dense t' yield ok, compare(diag_wide, dense_wide.T), 'diag w x dense w' yield ok, compare(dense_square, diag_square.T), 'dense s x diag s' yield ok, compare(dense_square, diag_tall.T), 'dense s x diag t' yield ok, compare(dense_square, diag_wide.T), 'dense s x diag w' yield ok, compare(dense_tall, diag_square.T), 'dense t x diag s' yield ok, compare(dense_tall, diag_tall.T), 'dense t x diag t' yield ok, compare(dense_tall, diag_wide.T), 'dense t x diag w' yield ok, compare(dense_wide, diag_square.T), 'dense w x diag s' yield ok, compare(dense_wide, diag_tall.T), 'dense w x diag t' yield ok, compare(dense_wide, diag_wide.T), 'dense w x diag w' # Test `B.matmul` with three matrices simultaneously. yield assert_allclose, \ B.matmul(dense_tall, dense_square, dense_wide, tr_c=True), \ dense(dense_tall).dot(dense(dense_square)).dot(dense(dense_wide).T) # Test `Woodbury`. wb = lr + dense_tall yield ok, compare(wb, dense_square.T), 'wb x dense s' yield ok, compare(dense_square, wb.T), 'dense s x wb' yield ok, compare(wb, wb.T), 'wb x wb' yield ok, compare(wb.T, wb), 'wb x wb (2)'