Example #1
0
def test_normal_lazy_mean_var_diag():
    # The lazy `mean_var_diag` should only be called when neither the mean nor the
    # diagonal of the variance exists. Otherwise, it's more efficient to just construct
    # the other one. We go over all branches in the `if`-statement.

    dist = Normal(lambda: B.ones(3, 1), lambda: B.eye(3), mean_var_diag=lambda: (8, 9))
    approx(dist.marginals(), (8, 9))
    approx(dist.mean, 8)
    approx(dist.var_diag, 9)

    dist = Normal(lambda: B.ones(3, 1), lambda: B.eye(3), mean_var_diag=lambda: (8, 9))
    approx(dist.mean, B.ones(3, 1))
    approx(dist.marginals(), (B.ones(3), B.ones(3)))
    approx(dist.var_diag, B.ones(3))

    dist = Normal(lambda: B.ones(3, 1), lambda: B.eye(3), mean_var_diag=lambda: (8, 9))
    approx(dist.var_diag, B.ones(3))
    approx(dist.marginals(), (B.ones(3), B.ones(3)))
    approx(dist.mean, B.ones(3, 1))

    dist = Normal(lambda: B.ones(3, 1), lambda: B.eye(3), mean_var_diag=lambda: (8, 9))
    approx(dist.var_diag, B.ones(3))
    approx(dist.mean, B.ones(3, 1))
    approx(dist.marginals(), (B.ones(3), B.ones(3)))
Example #2
0
def test_normal():
    mean = np.random.randn(3, 1)
    chol = np.random.randn(3, 3)
    var = chol.dot(chol.T)

    dist = Normal(var, mean)
    dist_sp = multivariate_normal(mean[:, 0], var)

    # Test second moment.
    yield assert_allclose, dist.m2, var + mean.dot(mean.T)

    # Test marginals.
    marg_mean, lower, upper = dist.marginals()
    yield assert_allclose, mean.squeeze(), marg_mean
    yield assert_allclose, lower, marg_mean - 2 * np.diag(var)**.5
    yield assert_allclose, upper, marg_mean + 2 * np.diag(var)**.5

    # Test `logpdf` and `entropy`.
    for _ in range(5):
        x = np.random.randn(3, 10)
        yield ok, allclose(dist.logpdf(x), dist_sp.logpdf(x.T)), 'logpdf'
        yield ok, allclose(dist.entropy(), dist_sp.entropy()), 'entropy'

    # Test that inputs to `logpdf` are converted appropriately.
    yield assert_allclose, \
          dist.logpdf(np.array([0, 1, 2])), \
          dist.logpdf([0, 1, 2])
    yield assert_allclose, \
          dist.logpdf(np.array([0, 1, 2])), \
          dist.logpdf((0, 1, 2))

    # Test the the output of `logpdf` is flattened appropriately.
    yield eq, np.shape(dist.logpdf(np.ones((3, 1)))), ()
    yield eq, np.shape(dist.logpdf(np.ones((3, 2)))), (2, )

    # Test KL with Monte Carlo estimate.
    mean2 = np.random.randn(3, 1)
    chol2 = np.random.randn(3, 3)
    var2 = chol2.dot(chol2.T)
    dist2 = Normal(var2, mean2)
    samples = dist.sample(50000)
    kl_est = np.mean(dist.logpdf(samples)) - np.mean(dist2.logpdf(samples))
    kl = dist.kl(dist2)
    yield ok, np.abs(kl_est - kl) / np.abs(kl) < 5e-2, 'kl sampled'
Example #3
0
def test_normal():
    mean = np.random.randn(3, 1)
    chol = np.random.randn(3, 3)
    var = chol.dot(chol.T)

    dist = Normal(var, mean)
    dist_sp = multivariate_normal(mean[:, 0], var)

    # Test second moment.
    allclose(dist.m2, var + mean.dot(mean.T))

    # Test marginals.
    marg_mean, lower, upper = dist.marginals()
    allclose(mean.squeeze(), marg_mean)
    allclose(lower, marg_mean - 2 * np.diag(var)**.5)
    allclose(upper, marg_mean + 2 * np.diag(var)**.5)

    # Test `logpdf` and `entropy`.
    for _ in range(5):
        x = np.random.randn(3, 10)
        allclose(dist.logpdf(x), dist_sp.logpdf(x.T), desc='logpdf')
        allclose(dist.entropy(), dist_sp.entropy(), desc='entropy')

    # Test the the output of `logpdf` is flattened appropriately.
    assert np.shape(dist.logpdf(np.ones((3, 1)))) == ()
    assert np.shape(dist.logpdf(np.ones((3, 2)))) == (2, )

    # Test KL with Monte Carlo estimate.
    mean2 = np.random.randn(3, 1)
    chol2 = np.random.randn(3, 3)
    var2 = chol2.dot(chol2.T)
    dist2 = Normal(var2, mean2)
    samples = dist.sample(50000)
    kl_est = np.mean(dist.logpdf(samples)) - np.mean(dist2.logpdf(samples))
    kl = dist.kl(dist2)
    assert np.abs(kl_est - kl) / np.abs(kl) < 5e-2, 'kl sampled'