Example #1
0
    def test_method_works_on_complex_numbers(self):
        re = np.arange(self.xmin, self.xmax, self.dx)
        im = np.arange(self.xmin, self.xmax, self.dx)

        y = np.zeros(re.shape[0], dtype=np.complex64)
        yerr = np.zeros(re.shape[0], dtype=complex)

        for k, (r, i) in enumerate(zip(re, im)):
            y[k] = r + i * 1j
            yerr[k] = r + i * 1j

        real_binned = np.zeros(self.true_values.shape[0], dtype=complex)

        for i in range(self.true_values.shape[0]):
            real_binned[i] = self.true_values[i] + self.true_values[i] * 1j

        _, _, binyerr_real, _ = \
            utils.rebin_data_log(self.x, y.real, self.f, y_err=yerr.real,
                                 dx=self.dx)
        _, biny, binyerr, _ = \
            utils.rebin_data_log(self.x, y, self.f, y_err=yerr,
                                 dx=self.dx)

        assert np.iscomplexobj(biny)
        assert np.iscomplexobj(binyerr)
        assert np.allclose(biny, real_binned)
        assert np.allclose(binyerr, binyerr_real + 1.j * binyerr_real)
Example #2
0
    def rebin_log(self, f=0.01):
        """
        Logarithmic rebin of the periodogram.
        The new frequency depends on the previous frequency
        modified by a factor f:

        .. math::

            d\\nu_j = d\\nu_{j-1} (1+f)

        Parameters
        ----------
        f: float, optional, default ``0.01``
            parameter that steers the frequency resolution


        Returns
        -------
        new_spec : :class:`Crossspectrum` (or one of its subclasses) object
            The newly binned cross spectrum or power spectrum.
            Note: this object will be of the same type as the object
            that called this method. For example, if this method is called
            from :class:`AveragedPowerspectrum`, it will return an object of class
        """

        binfreq, binpower, binpower_err, nsamples = \
            rebin_data_log(self.freq, self.power, f,
                           y_err=self.power_err, dx=self.df)

        # the frequency resolution
        df = np.diff(binfreq)

        # shift the lower bin edges to the middle of the bin and drop the
        # last right bin edge
        binfreq = binfreq[:-1] + df / 2

        new_spec = copy.copy(self)
        new_spec.freq = binfreq
        new_spec.power = binpower
        new_spec.power_err = binpower_err
        new_spec.m = nsamples * self.m

        if hasattr(self, 'unnorm_power'):
            _, binpower_unnorm, _, _ = \
                rebin_data_log(self.freq, self.unnorm_power, f, dx=self.df)

            new_spec.unnorm_power = binpower_unnorm

        if hasattr(self, 'pds1'):
            new_spec.pds1 = self.pds1.rebin_log(f)
        if hasattr(self, 'pds2'):
            new_spec.pds2 = self.pds2.rebin_log(f)

        if hasattr(self, 'cs_all'):
            cs_all = []
            for c in self.cs_all:
                cs_all.append(c.rebin_log(f))
            new_spec.cs_all = cs_all

        return new_spec
Example #3
0
    def rebin_log(self, f=0.01):
        """
        Logarithmic rebin of the periodogram.
        The new frequency depends on the previous frequency
        modified by a factor f:

        dnu_j = dnu_{j-1}*(1+f)

        Parameters
        ----------
        f: float, optional, default 0.01
            parameter that steers the frequency resolution


        Returns
        -------
        new_spec : Crossspectrum (or one of its subclasses) object
            The newly binned cross spectrum or power spectrum.
            Note: this object will be of the same type as the object
            that called this method. For example, if this method is called
            from `AveragedPowerspectrum`, it will return an object of class
        """

        binfreq, binpower, binpower_err, nsamples = \
            rebin_data_log(self.freq, self.power, f,
                           y_err=self.power_err, dx=self.df)

        # the frequency resolution
        df = np.diff(binfreq)

        # shift the lower bin edges to the middle of the bin and drop the
        # last right bin edge
        binfreq = binfreq[:-1] + df / 2

        new_spec = copy.copy(self)
        new_spec.freq = binfreq
        new_spec.power = binpower
        new_spec.power_err = binpower_err
        new_spec.m = nsamples * self.m

        if hasattr(self, 'unnorm_power'):
            _, binpower_unnorm, _, _ = \
                rebin_data_log(self.freq, self.unnorm_power, f, dx=self.df)

            new_spec.unnorm_power = binpower_unnorm

        if hasattr(self, 'pds1'):
            new_spec.pds1 = self.pds1.rebin_log(f)
        if hasattr(self, 'pds2'):
            new_spec.pds2 = self.pds2.rebin_log(f)

        if hasattr(self, 'cs_all'):
            cs_all = []
            for c in self.cs_all:
                cs_all.append(c.rebin_log(f))
            new_spec.cs_all = cs_all

        return new_spec
Example #4
0
 def test_method_fails_if_y_and_yerr_of_unequal_length(self):
     with pytest.raises(ValueError):
         _, _, _, _ = utils.rebin_data_log(self.x,
                                           self.y,
                                           self.f,
                                           y_err=self.y_err[1:],
                                           dx=self.dx)
Example #5
0
    def test_all_outputs_have_the_same_dimension_except_binx(self):
        binx, biny, binyerr, nsamples = utils.rebin_data_log(self.x, self.y, self.f, y_err=self.y_err, dx=self.dx)

        # binx describes the bin _edges_ rather than midpoints, so has one more entry
        # than biny and the rest
        assert binx.shape[0] == biny.shape[0]+1
        assert biny.shape[0] == binyerr.shape[0]
        assert binyerr.shape[0] == nsamples.shape[0]
Example #6
0
    def test_bin_values_are_correct(self):
        _, biny, _, _ = utils.rebin_data_log(self.x,
                                             self.y,
                                             self.f,
                                             y_err=self.y_err,
                                             dx=self.dx)

        assert np.allclose(biny, self.true_values)
Example #7
0
 def test_return_float_with_floats(self):
     _, biny, binyerr, _ = utils.rebin_data_log(self.x,
                                                self.y,
                                                self.f,
                                                y_err=self.y_err,
                                                dx=self.dx)
     assert not np.iscomplexobj(biny)
     assert not np.iscomplexobj(binyerr)
Example #8
0
    def test_nsamples_are_correctly_calculated(self):
        _, _, _, nsamples = utils.rebin_data_log(self.x,
                                                 self.y,
                                                 self.f,
                                                 y_err=self.y_err,
                                                 dx=self.dx)

        assert np.allclose(nsamples, self.true_nsamples)
Example #9
0
    def test_binning_works_correctly(self):
        binx, _, _, _ = utils.rebin_data_log(self.x,
                                             self.y,
                                             self.f,
                                             y_err=self.y_err,
                                             dx=self.dx)

        assert np.allclose(np.diff(binx), self.true_bins)
Example #10
0
    def test_all_outputs_have_the_same_dimension_except_binx(self):
        binx, biny, binyerr, nsamples = utils.rebin_data_log(self.x, self.y,
                                                             self.f,
                                                             y_err=self.y_err,
                                                             dx=self.dx)

        # binx describes the bin _edges_ rather than midpoints, so has one
        # more entry than biny and the rest
        assert binx.shape[0] == biny.shape[0] + 1
        assert biny.shape[0] == binyerr.shape[0]
        assert binyerr.shape[0] == nsamples.shape[0]
Example #11
0
    def test_method_works_on_complex_numbers(self):
        re = np.arange(self.xmin, self.xmax, self.dx)
        im = np.arange(self.xmin, self.xmax, self.dx)

        y = np.zeros(re.shape[0], dtype=np.complex)
        yerr = np.zeros(re.shape[0], dtype=np.complex)

        for k, (r, i) in enumerate(zip(re, im)):
            y[k] = r + i * 1j
            yerr[k] = r + i * 1j

        real_binned = np.zeros(self.true_values.shape[0], dtype=np.complex)

        for i in range(self.true_values.shape[0]):
            real_binned[i] = self.true_values[i] + self.true_values[i] * 1j

        _, biny, _, _ = utils.rebin_data_log(self.x, y, self.f, y_err=yerr,
                                             dx=self.dx)

        assert np.allclose(biny, real_binned)
Example #12
0
 def test_rebin_data_log_runs(self):
     _, _, _, _ = utils.rebin_data_log(self.x, self.y, self.f, y_err=self.y_err, dx=self.dx)
Example #13
0
    def test_bin_values_are_correct(self):
        _, biny, _, _ = utils.rebin_data_log(self.x, self.y, self.f,
                                             y_err=self.y_err, dx=self.dx)

        assert np.allclose(biny, self.true_values)
Example #14
0
    def test_binning_works_correctly(self):
        binx, _, _, _ = utils.rebin_data_log(self.x, self.y, self.f,
                                             y_err=self.y_err, dx=self.dx)

        assert np.allclose(np.diff(binx), self.true_bins)
Example #15
0
    def rebin_log(self, f=0.01):
        """
        Logarithmic rebin of the periodogram.
        The new frequency depends on the previous frequency
        modified by a factor f:

        dnu_j = dnu_{j-1}*(1+f)

        Parameters
        ----------
        f: float, optional, default 0.01
            parameter that steers the frequency resolution


        Returns
        -------
        binfreq: numpy.ndarray
            the binned frequencies

        binpower: numpy.ndarray
            the binned powers

        binpower_err: numpy.ndarray
            the uncertainties in binpower

        nsamples: numpy.ndarray
            the samples of the original periodogram included in each
            frequency bin
        """

        binfreq, binpower, binpower_err, nsamples = \
            rebin_data_log(self.freq, self.power, f,
                           y_err=self.power_err, dx=self.df)

        # the frequency resolution
        df = np.diff(binfreq)

        # shift the lower bin edges to the middle of the bin and drop the
        # last right bin edge
        binfreq = binfreq[:-1] + df / 2

        new_spec = copy.copy(self)
        new_spec.freq = binfreq
        new_spec.power = binpower
        new_spec.power_err = binpower_err
        new_spec.m = nsamples * self.m

        if hasattr(self, 'unnorm_power'):
            _, binpower_unnorm, _, _ = \
                rebin_data_log(self.freq, self.unnorm_power, f, dx=self.df)

            new_spec.unnorm_power = binpower_unnorm

        if hasattr(self, 'pds1'):
            new_spec.pds1 = self.pds1.rebin_log(f)
        if hasattr(self, 'pds2'):
            new_spec.pds2 = self.pds2.rebin_log(f)

        if hasattr(self, 'cs_all'):
            cs_all = []
            for c in self.cs_all:
                cs_all.append(c.rebin_log(f))
            new_spec.cs_all = cs_all

        return new_spec
Example #16
0
    def test_nsamples_are_correctly_calculated(self):
        _, _, _, nsamples = utils.rebin_data_log(self.x, self.y, self.f,
                                                 y_err=self.y_err, dx=self.dx)

        assert np.allclose(nsamples, self.true_nsamples)
Example #17
0
 def test_method_fails_if_x_and_y_of_unequal_length(self):
     with pytest.raises(ValueError):
         _, _, _, _ = utils.rebin_data_log(self.x[1:], self.y, self.f,
                                           y_err=self.y_err, dx=self.dx)
Example #18
0
 def test_rebin_data_log_runs(self):
     _, _, _, _ = utils.rebin_data_log(self.x, self.y, self.f,
                                       y_err=self.y_err, dx=self.dx)