Example #1
0
    def filter_fn(mol):
        return not hasattr(mol, fn.__name__)

    def inner(progress):
        all(True for _ in map(fn, filter(filter_fn, progress)))

    return inner


plotters = [
    stk.ProgressPlotter(
        filename="fitness_plot",
        property_fn=lambda progress, mol: progress.get_fitness_values()[mol],
        y_label="Fitness",
        filter=lambda progress, mol: progress.get_fitness_values()[mol],
        progress_fn=lambda progress: progress.
        set_fitness_values_from_calculators(
            fitness_calculator=fitness_calculator,
            fitness_normalizer=fitness_normalizer,
            num_processes=num_processes,
        ),
    ),
    stk.ProgressPlotter(
        filename="synthetic_accesibility_scores",
        property_fn=lambda progress, mol: mol.sa_score,
        y_label="Synthetic Accessibility / unitless",
        filter=lambda progress, mol: mol.sa_score is not None,
        progress_fn=apply(synthetic_accesibility_func),
    ),
    stk.ProgressPlotter(
        filename="volume_plot",
        property_fn=lambda progress, mol: mol.pore_diameter,
Example #2
0
        return not hasattr(mol, fn.__name__)

    def inner(progress):
        all(True for _ in map(fn, filter(filter_fn, progress)))

    return inner


plotters = [
    stk.ProgressPlotter(
        filename='fitness_plot',
        property_fn=lambda progress, mol:
            progress.get_fitness_values()[mol],
        y_label='Fitness',
        filter=lambda progress, mol:
            progress.get_fitness_values()[mol],
        progress_fn=lambda progress:
            progress.set_fitness_values_from_calculators(
                fitness_calculator=fitness_calculator,
                fitness_normalizer=fitness_normalizer,
                num_processes=num_processes,
            )
    ),
    stk.ProgressPlotter(
        filename='window_std',
        property_fn=lambda progress, mol: mol.window_std,
        y_label='Std. Dev. of Window Diameters / A',
        filter=lambda progress, mol:
            mol.window_std is not None,
        progress_fn=apply(window_std),
    ),
    stk.ProgressPlotter(
Example #3
0
 plotter=stk.ProgressPlotter(
     generations=(
         stk.Generation(
             molecule_records=get_generation(0, 1, 2),
             mutation_records=(),
             crossover_records=(),
         ),
         stk.Generation(
             molecule_records=get_generation(10, 20, 30),
             mutation_records=(),
             crossover_records=(),
         ),
         stk.Generation(
             molecule_records=get_generation(40, 50, 60),
             mutation_records=(),
             crossover_records=(),
         ),
         stk.Generation(
             molecule_records=get_generation(40, 50, 60),
             mutation_records=(),
             crossover_records=(),
         ),
         stk.Generation(
             molecule_records=get_generation(70, 80, 90),
             mutation_records=(),
             crossover_records=(),
         ),
     ),
     get_property=lambda record: record.get_fitness_value(),
     y_label='Fitness Value',
     filter=lambda record: record.get_fitness_value() is not None,
 ),
Example #4
0
fitness_normalizer = stk.NormalizerSequence(stk.Power(0.5), stk.Sum())

# #####################################################################
# Exit condition.
# #####################################################################

terminator = stk.NumGenerations(25)

# #####################################################################
# Make plotters.
# #####################################################################

plotters = [
    stk.ProgressPlotter(
        filename='fitness_plot',
        property_fn=lambda mol: mol.fitness,
        y_label='Fitness',
    ),
    stk.ProgressPlotter(
        filename='atom_number_plot',
        property_fn=lambda mol: len(mol.atoms),
        y_label='Number of Atoms',
    )
]

stk.SelectionPlotter(filename='generational_selection',
                     selector=generation_selector)
stk.SelectionPlotter(filename='crossover_selection',
                     selector=crossover_selector)
stk.SelectionPlotter(filename='mutation_selection', selector=mutation_selector)
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--mongodb_uri',
                        help='The MongoDB URI for the database to connect to.',
                        default='mongodb://localhost:27017/')
    args = parser.parse_args()

    logging.basicConfig(level=logging.INFO)

    # Use a random seed to get reproducible results.
    random_seed = 4
    generator = np.random.RandomState(random_seed)

    logger.info('Making building blocks.')

    # Load the building block databases.
    fluoros = tuple(
        get_building_blocks(
            path=pathlib.Path(__file__).parent / 'fluoros.txt',
            functional_group_factory=stk.FluoroFactory(),
        ))
    bromos = tuple(
        get_building_blocks(
            path=pathlib.Path(__file__).parent / 'bromos.txt',
            functional_group_factory=stk.BromoFactory(),
        ))

    initial_population = tuple(get_initial_population(fluoros, bromos))
    # Write the initial population.
    for i, record in enumerate(initial_population):
        write(record.get_molecule(), f'initial_{i}.mol')

    client = pymongo.MongoClient(args.mongodb_uri)
    db = stk.ConstructedMoleculeMongoDb(client)
    fitness_db = stk.ValueMongoDb(client, 'fitness_values')

    # Plot selections.
    generation_selector = stk.Best(
        num_batches=25,
        duplicate_molecules=False,
    )
    stk.SelectionPlotter('generation_selection', generation_selector)

    mutation_selector = stk.Roulette(
        num_batches=5,
        random_seed=generator.randint(0, 1000),
    )
    stk.SelectionPlotter('mutation_selection', mutation_selector)

    crossover_selector = stk.Roulette(
        num_batches=3,
        batch_size=2,
        random_seed=generator.randint(0, 1000),
    )
    stk.SelectionPlotter('crossover_selection', crossover_selector)

    fitness_calculator = stk.PropertyVector(
        property_functions=(
            get_num_rotatable_bonds,
            get_complexity,
            get_num_bad_rings,
        ),
        input_database=fitness_db,
        output_database=fitness_db,
    )

    fitness_normalizer = stk.NormalizerSequence(
        fitness_normalizers=(
            # Prevent division by 0 error in DivideByMean, by ensuring
            # a value of each property to be at least 1.
            stk.Add((1, 1, 1)),
            stk.DivideByMean(),
            # Obviously, because all coefficients are equal, the
            # Multiply normalizer does not need to be here. However,
            # it's here to show that you can easily change the relative
            # importance of each component of the fitness value, by
            # changing the values of the coefficients.
            stk.Multiply((1, 1, 1)),
            stk.Sum(),
            stk.Power(-1),
        ), )

    ea = stk.EvolutionaryAlgorithm(
        num_processes=1,
        initial_population=initial_population,
        fitness_calculator=fitness_calculator,
        mutator=stk.RandomMutator(
            mutators=(
                stk.RandomBuildingBlock(
                    building_blocks=fluoros,
                    is_replaceable=is_fluoro,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.SimilarBuildingBlock(
                    building_blocks=fluoros,
                    is_replaceable=is_fluoro,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.RandomBuildingBlock(
                    building_blocks=bromos,
                    is_replaceable=is_bromo,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.SimilarBuildingBlock(
                    building_blocks=bromos,
                    is_replaceable=is_bromo,
                    random_seed=generator.randint(0, 1000),
                ),
            ),
            random_seed=generator.randint(0, 1000),
        ),
        crosser=stk.GeneticRecombination(get_gene=get_functional_group_type, ),
        generation_selector=generation_selector,
        mutation_selector=mutation_selector,
        crossover_selector=crossover_selector,
        fitness_normalizer=fitness_normalizer,
    )

    logger.info('Starting EA.')

    generations = []
    for generation in ea.get_generations(50):
        for record in generation.get_molecule_records():
            db.put(record.get_molecule())
        generations.append(generation)

    # Write the final population.
    for i, record in enumerate(generation.get_molecule_records()):
        write(record.get_molecule(), f'final_{i}.mol')

    logger.info('Making fitness plot.')

    # Normalize the fitness values across the entire EA before
    # plotting the fitness values.
    generations = tuple(
        normalize_generations(
            fitness_calculator=fitness_calculator,
            fitness_normalizer=fitness_normalizer,
            generations=generations,
        ))

    fitness_progress = stk.ProgressPlotter(
        generations=generations,
        get_property=lambda record: record.get_fitness_value(),
        y_label='Fitness Value',
    )
    fitness_progress.write('fitness_progress.png')
    fitness_progress.get_plot_data().to_csv('fitness_progress.csv')

    logger.info('Making rotatable bonds plot.')

    rotatable_bonds_progress = stk.ProgressPlotter(
        generations=generations,
        get_property=lambda record: get_num_rotatable_bonds(record.
                                                            get_molecule()),
        y_label='Number of Rotatable Bonds',
    )
    rotatable_bonds_progress.write('rotatable_bonds_progress.png')
Example #6
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--mongodb_uri',
        help='The MongoDB URI for the database to connect to.',
        default='mongodb://localhost:27017/',
    )
    args = parser.parse_args()

    logging.basicConfig(level=logging.INFO)

    # Use a random seed to get reproducible results.
    random_seed = 4
    generator = np.random.RandomState(random_seed)

    logger.info('Making building blocks.')

    # Load the building block databases.
    fluoros = tuple(
        get_building_blocks(
            path=pathlib.Path(__file__).parent / 'fluoros.txt',
            functional_group_factory=stk.FluoroFactory(),
        ))
    bromos = tuple(
        get_building_blocks(
            path=pathlib.Path(__file__).parent / 'bromos.txt',
            functional_group_factory=stk.BromoFactory(),
        ))

    initial_population = tuple(get_initial_population(fluoros, bromos))
    # Write the initial population.
    for i, record in enumerate(initial_population):
        write(record.get_molecule(), f'initial_{i}.mol')

    client = pymongo.MongoClient(args.mongodb_uri)
    db = stk.ConstructedMoleculeMongoDb(client)
    ea = stk.EvolutionaryAlgorithm(
        initial_population=initial_population,
        fitness_calculator=stk.FitnessFunction(get_fitness_value),
        mutator=stk.RandomMutator(
            mutators=(
                stk.RandomBuildingBlock(
                    building_blocks=fluoros,
                    is_replaceable=is_fluoro,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.SimilarBuildingBlock(
                    building_blocks=fluoros,
                    is_replaceable=is_fluoro,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.RandomBuildingBlock(
                    building_blocks=bromos,
                    is_replaceable=is_bromo,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.SimilarBuildingBlock(
                    building_blocks=bromos,
                    is_replaceable=is_bromo,
                    random_seed=generator.randint(0, 1000),
                ),
            ),
            random_seed=generator.randint(0, 1000),
        ),
        crosser=stk.GeneticRecombination(get_gene=get_functional_group_type, ),
        generation_selector=stk.Best(
            num_batches=25,
            duplicate_molecules=False,
        ),
        mutation_selector=stk.Roulette(
            num_batches=5,
            random_seed=generator.randint(0, 1000),
        ),
        crossover_selector=stk.Roulette(
            num_batches=3,
            batch_size=2,
            random_seed=generator.randint(0, 1000),
        ),
    )

    logger.info('Starting EA.')

    generations = []
    for generation in ea.get_generations(50):
        for record in generation.get_molecule_records():
            db.put(record.get_molecule())
        generations.append(generation)

    # Write the final population.
    for i, record in enumerate(generation.get_molecule_records()):
        write(record.get_molecule(), f'final_{i}.mol')

    logger.info('Making fitness plot.')

    fitness_progress = stk.ProgressPlotter(
        generations=generations,
        get_property=lambda record: record.get_fitness_value(),
        y_label='Fitness Value',
    )
    fitness_progress.write('fitness_progress.png')

    logger.info('Making rotatable bonds plot.')

    rotatable_bonds_progress = stk.ProgressPlotter(
        generations=generations,
        get_property=get_num_rotatable_bonds,
        y_label='Number of Rotatable Bonds',
    )
    rotatable_bonds_progress.write('rotatable_bonds_progress.png')