Example #1
0
    def _generate_price_history(self):
        try:
            price_fbm = FractionalBrownianMotion(t=self._times_to_generate, hurst=self._hurst)
            volume_gen = GaussianNoise(t=self._times_to_generate)
        except:
            self._generate_price_history()

        start_date = pd.to_datetime(self._start_date, format=self._start_date_format)

        price_volatility = price_fbm.sample(self._times_to_generate, zero=False)
        prices = price_volatility + self._base_price
        volume_volatility = volume_gen.sample(self._times_to_generate)
        volumes = volume_volatility * price_volatility + self._base_volume

        price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float)
        volume_frame = pd.DataFrame(
            [], columns=['date', 'volume'], dtype=float)

        price_frame['date'] = pd.date_range(
            start=start_date, periods=self._times_to_generate, freq="1min")
        price_frame['price'] = abs(prices)

        volume_frame['date'] = price_frame['date'].copy()
        volume_frame['volume'] = abs(volumes)

        price_frame.set_index('date')
        price_frame.index = pd.to_datetime(price_frame.index, unit='m', origin=start_date)

        volume_frame.set_index('date')
        volume_frame.index = pd.to_datetime(volume_frame.index, unit='m', origin=start_date)

        data_frame = price_frame['price'].resample(self._timeframe).ohlc()
        data_frame['volume'] = volume_frame['volume'].resample(self._timeframe).sum()

        self.data_frame = data_frame.astype(self._dtype)
Example #2
0
def generate(price_fn: Callable[[ModelParameters], np.array],
             base_price: int = 1,
             base_volume: int = 1,
             start_date: str = '2010-01-01',
             start_date_format: str = '%Y-%m-%d',
             times_to_generate: int = 1000,
             time_frame: str = '1h',
             params: ModelParameters = None):

    delta = get_delta(time_frame)
    times_to_generate = scale_times_to_generate(times_to_generate, time_frame)

    params = params or default(base_price, times_to_generate, delta)

    prices = price_fn(params)

    volume_gen = GaussianNoise(t=times_to_generate)
    volumes = volume_gen.sample(times_to_generate) + base_volume

    start_date = pd.to_datetime(start_date, format=start_date_format)
    price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float)
    volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float)

    price_frame['date'] = pd.date_range(start=start_date,
                                        periods=times_to_generate,
                                        freq="1min")
    price_frame['price'] = abs(prices)

    volume_frame['date'] = price_frame['date'].copy()
    volume_frame['volume'] = abs(volumes)

    price_frame.set_index('date')
    price_frame.index = pd.to_datetime(price_frame.index,
                                       unit='m',
                                       origin=start_date)

    volume_frame.set_index('date')
    volume_frame.index = pd.to_datetime(volume_frame.index,
                                        unit='m',
                                        origin=start_date)

    data_frame = price_frame['price'].resample(time_frame).ohlc()
    data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum()

    return data_frame
Example #3
0
def fbm(base_price: int = 1,
        base_volume: int = 1,
        start_date: str = '2010-01-01',
        start_date_format: str = '%Y-%m-%d',
        times_to_generate: int = 1000,
        hurst: float = 0.61,
        time_frame: str = '1h'):

    times_to_generate = scale_times_to_generate(times_to_generate, time_frame)

    price_fbm = FractionalBrownianMotion(t=times_to_generate, hurst=hurst)
    price_volatility = price_fbm.sample(times_to_generate, zero=False)
    prices = price_volatility + base_price

    volume_gen = GaussianNoise(times_to_generate)
    volume_volatility = volume_gen.sample(times_to_generate)
    volumes = volume_volatility * price_volatility + base_volume

    start_date = pd.to_datetime(start_date, format=start_date_format)
    price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float)
    volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float)

    price_frame['date'] = pd.date_range(start=start_date,
                                        periods=times_to_generate,
                                        freq="1min")
    price_frame['price'] = abs(prices)

    volume_frame['date'] = price_frame['date'].copy()
    volume_frame['volume'] = abs(volumes)

    price_frame.set_index('date')
    price_frame.index = pd.to_datetime(price_frame.index,
                                       unit='m',
                                       origin=start_date)

    volume_frame.set_index('date')
    volume_frame.index = pd.to_datetime(volume_frame.index,
                                        unit='m',
                                        origin=start_date)

    data_frame = price_frame['price'].resample(time_frame).ohlc()
    data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum()

    return data_frame
Example #4
0
def gbm(base_price: int = 1,
        base_volume: int = 1,
        start_date: str = '2010-01-01',
        start_date_format: str = '%Y-%m-%d',
        times_to_generate: int = 1000,
        time_frame: str = '1h',
        params: 'ModelParameters' = None) -> 'pd.DataFrame':
    """Generates price data from a GBM process.

    Parameters
    ----------
    base_price : int, default 1
        The base price to use for price generation.
    base_volume : int, default 1
        The base volume to use for volume generation.
    start_date : str, default '2010-01-01'
        The start date of the generated data
    start_date_format : str, default '%Y-%m-%d'
        The format for the start date of the generated data.
    times_to_generate : int, default 1000
        The number of bars to make.
    time_frame : str, default '1h'
        The time frame.
    params : `ModelParameters`, optional
        The model parameters.

    Returns
    -------
    `pd.DataFrame`
        The generated data frame containing the OHLCV bars.

    References
    ----------
    [1] https://en.wikipedia.org/wiki/Geometric_Brownian_motion
    """

    delta = get_delta(time_frame)
    times_to_generate = scale_times_to_generate(times_to_generate, time_frame)

    params = params or default(base_price, times_to_generate, delta)

    prices = geometric_brownian_motion_levels(params)

    volume_gen = GaussianNoise(t=times_to_generate)
    volumes = volume_gen.sample(times_to_generate) + base_volume

    start_date = pd.to_datetime(start_date, format=start_date_format)
    price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float)
    volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float)

    price_frame['date'] = pd.date_range(start=start_date, periods=times_to_generate, freq="1min")
    price_frame['price'] = abs(prices)

    volume_frame['date'] = price_frame['date'].copy()
    volume_frame['volume'] = abs(volumes)

    price_frame.set_index('date')
    price_frame.index = pd.to_datetime(price_frame.index, unit='m', origin=start_date)

    volume_frame.set_index('date')
    volume_frame.index = pd.to_datetime(volume_frame.index, unit='m', origin=start_date)

    data_frame = price_frame['price'].resample(time_frame).ohlc()
    data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum()

    return data_frame
Example #5
0
def test_gaussian_noise_sample(t, n, zero):
    instance = GaussianNoise(t)
    s = instance.sample(n)
    assert len(s) == n
Example #6
0
def fbm(base_price: int = 1,
        base_volume: int = 1,
        start_date: str = '2010-01-01',
        start_date_format: str = '%Y-%m-%d',
        times_to_generate: int = 1000,
        hurst: float = 0.61,
        time_frame: str = '1h') -> 'pd.DataFrame':
    """Generates price data from the FBM process.

    Parameters
    ----------
    base_price : int, default 1
        The base price to use for price generation.
    base_volume : int, default 1
        The base volume to use for volume generation.
    start_date : str, default '2010-01-01'
        The start date of the generated data
    start_date_format : str, default '%Y-%m-%d'
        The format for the start date of the generated data.
    times_to_generate : int, default 1000
        The number of bars to make.
    hurst : float, default 0.61
        The hurst parameter for the FBM process.
    time_frame : str, default '1h'
        The time frame.

    Returns
    -------
    `pd.DataFrame`
        The generated data frame containing the OHLCV bars.

    References
    ----------
    [1] https://en.wikipedia.org/wiki/Fractional_Brownian_motion
    """

    times_to_generate = scale_times_to_generate(times_to_generate, time_frame)

    price_fbm = FractionalBrownianMotion(t=times_to_generate, hurst=hurst)
    price_volatility = price_fbm.sample(times_to_generate, zero=False)
    prices = price_volatility + base_price

    volume_gen = GaussianNoise(times_to_generate)
    volume_volatility = volume_gen.sample(times_to_generate)
    volumes = volume_volatility * price_volatility + base_volume

    start_date = pd.to_datetime(start_date, format=start_date_format)
    price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float)
    volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float)

    price_frame['date'] = pd.date_range(start=start_date,
                                        periods=times_to_generate,
                                        freq="1min")
    price_frame['price'] = abs(prices)

    volume_frame['date'] = price_frame['date'].copy()
    volume_frame['volume'] = abs(volumes)

    price_frame.set_index('date')
    price_frame.index = pd.to_datetime(price_frame.index,
                                       unit='m',
                                       origin=start_date)

    volume_frame.set_index('date')
    volume_frame.index = pd.to_datetime(volume_frame.index,
                                        unit='m',
                                        origin=start_date)

    data_frame = price_frame['price'].resample(time_frame).ohlc()
    data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum()

    return data_frame
Example #7
0
class VarianceGammaProcess(Continuous):
    r"""Variance Gamma process.

    .. image:: _static/variance_gamma_process.png
        :scale: 50%

    A variance gamma process has independent increments which follow the
    variance-gamma distribution. It can be represented as a Brownian motion
    with drift subordinated by a Gamma process:

    .. math::

        \theta \Gamma(t; 1, \nu) + \sigma W(\Gamma(t; 1, \nu))

    :param float t: the right hand endpoint of the time interval :math:`[0,t]`
        for the process
    :param float drift: the drift parameter of the Brownian motion,
        or :math:`\theta` above
    :param float variance: the variance parameter of the Gamma subordinator,
        or :math:`\nu` above
    :param float scale: the scale parameter of the Brownian motion,
        or :math:`\sigma` above
    """
    def __init__(self, t=1, drift=0, variance=1, scale=1):
        super(VarianceGammaProcess, self).__init__(t)
        self.drift = drift
        self.variance = variance
        self.scale = scale
        self.gn = GaussianNoise(t)

    @property
    def drift(self):
        """Drift parameter."""
        return self._drift

    @drift.setter
    def drift(self, value):
        self._check_number(value, "Drift")
        self._drift = value

    @property
    def variance(self):
        """Variance parameter."""
        return self._variance

    @variance.setter
    def variance(self, value):
        self._check_positive_number(value, "Variance")
        self._variance = value

    @property
    def scale(self):
        """Scale parameter."""
        return self._scale

    @scale.setter
    def scale(self, value):
        self._check_positive_number(value, "Scale")
        self._scale = value

    def _sample_variance_gamma_process(self, n, zero=True):
        """Generate a realization of a variance gamma process."""
        self._check_increments(n)
        self._check_zero(zero)

        delta_t = 1.0 * self.t / n
        shape = delta_t / self.variance
        scale = self.variance

        gammas = np.random.gamma(shape=shape, scale=scale, size=n)
        gn = self.gn.sample(n)

        increments = self.drift * gammas + self.scale * np.sqrt(gammas) * gn

        samples = np.cumsum(increments)

        if zero:
            return np.concatenate(([0], samples))
        else:
            return samples

    def _sample_variance_gamma_process_at(self, times):
        """Generate a realization of a variance gamma process."""
        if times[0] != 0:
            zero = False
            times = np.array([0] + list(times))
        else:
            zero = True

        shapes = np.diff(times) / self.variance
        scale = self.variance

        gammas = np.array([
            np.random.gamma(shape=shape, scale=scale, size=1)[0]
            for shape in shapes
        ])
        gn = self.gn.sample_at(times)

        increments = self.drift * gammas + self.scale * np.sqrt(gammas) * gn

        samples = np.cumsum(increments)
        if zero:
            samples = np.insert(samples, 0, [0])
        return samples

    def sample(self, n, zero=True):
        """Generate a realization.

        :param int n: the number of increments to generate
        :param bool zero: if True, include :math:`t=0`
        """
        return self._sample_variance_gamma_process(n, zero)

    def sample_at(self, times):
        """Generate a realization using specified times.

        :param times: a vector of increasing time values at which to generate
            the realization
        """
        return self._sample_variance_gamma_process_at(times)
Example #8
0
def generate(price_fn: 'Callable[[ModelParameters], np.array]',
             base_price: int = 1,
             base_volume: int = 1,
             start_date: str = '2010-01-01',
             start_date_format: str = '%Y-%m-%d',
             times_to_generate: int = 1000,
             time_frame: str = '1h',
             params: ModelParameters = None) -> 'pd.DataFrame':
    """Generates a data frame of OHLCV data based on the price model specified.

    Parameters
    ----------
    price_fn : `Callable[[ModelParameters], np.array]`
        The price function generate the prices based on the chosen model.
    base_price : int, default 1
        The base price to use for price generation.
    base_volume : int, default 1
        The base volume to use for volume generation.
    start_date : str, default '2010-01-01'
        The start date of the generated data
    start_date_format : str, default '%Y-%m-%d'
        The format for the start date of the generated data.
    times_to_generate : int, default 1000
        The number of bars to make.
    time_frame : str, default '1h'
        The time frame.
    params : `ModelParameters`, optional
        The model parameters.

    Returns
    -------
    `pd.DataFrame`
        The data frame containing the OHLCV bars.
    """

    delta = get_delta(time_frame)
    times_to_generate = scale_times_to_generate(times_to_generate, time_frame)

    params = params or default(base_price, times_to_generate, delta)

    prices = price_fn(params)

    volume_gen = GaussianNoise(t=times_to_generate)
    volumes = volume_gen.sample(times_to_generate) + base_volume

    start_date = pd.to_datetime(start_date, format=start_date_format)
    price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float)
    volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float)

    price_frame['date'] = pd.date_range(start=start_date,
                                        periods=times_to_generate,
                                        freq="1min")
    price_frame['price'] = abs(prices)

    volume_frame['date'] = price_frame['date'].copy()
    volume_frame['volume'] = abs(volumes)

    price_frame.set_index('date')
    price_frame.index = pd.to_datetime(price_frame.index,
                                       unit='m',
                                       origin=start_date)

    volume_frame.set_index('date')
    volume_frame.index = pd.to_datetime(volume_frame.index,
                                        unit='m',
                                        origin=start_date)

    data_frame = price_frame['price'].resample(time_frame).ohlc()
    data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum()

    return data_frame