Example #1
0
def rerun_existing_simulations():
    total_count = MySimulationCondition.objects.all().count()
    for counter, condition in enumerate(MySimulationCondition.objects.filter(strategy=2)):
        logger.debug('%s: %d/%d'%(inspect.stack()[1][3], counter, total_count))

        # simulation run
        backtesting_simulation_consumer.delay(cPickle.dumps(condition), is_update=True)
Example #2
0
    def form_valid(self, form):
        # persist simulation conditions
        condition, created = MySimulationCondition.objects.get_or_create(
            **form.cleaned_data)

        # run simulation for 1st time
        if not MyPosition.objects.filter(simulation=condition):
            # MySimulationCondition is not JSON serializable
            # so we use cPickle to pass object to background queue task
            backtesting_simulation_consumer.delay(cPickle.dumps(condition))
            return HttpResponseRedirect(reverse_lazy('simulation_result_list'))
        else:
            return HttpResponseRedirect(reverse_lazy('condition_detail', kwargs={'pk': condition.id}))
Example #3
0
def batch_simulation_daily_return(date_range, strategies = [1,2], capital = 10000, per_trade = 1000):
    sources = [1, 2, 3, 5]
    strategy_values = [1]

    # get 8211 related sectors
    stock_8211 = MyStock.objects.filter(symbol__startswith="8821")
    sectors = [None] + reduce(lambda x, y: x + y,
                              [list(s.mysector_set.all()) for s in stock_8211])

    # simulation run
    conditions = []
    for (source, strategy, strategy_value, sector) in itertools.product(sources, strategies, strategy_values, sectors):
        for (start,end) in date_range:      
            # we only try strategy 2 with source 1
            if strategy == 2 and source != 1:
                continue

            # we only try strategy 5 with sector
            if sector and source != 5:
                continue

            # simulation parameters
            logger.debug(source, strategy, strategy_value, start, end, sector)

            # cutoffs have different meanings based on strategy
            if strategy == 1:
                step = 25
                buy_cutoff = range(0, 100, step)
                sell_cutoff = [b + step for b in buy_cutoff]
                cutoffs = zip(buy_cutoff, sell_cutoff)
            elif strategy == 2:
                buy_cutoff = range(1,6,1)
                sell_cutoff = range(1,6,1)
                cutoffs = itertools.product(buy_cutoff, sell_cutoff)
                # cutoffs = [(1,1)]

            # Set up simulation condition objects based on
            # combination of specified parameters. Note that
            # the count of this matrix increases dramatically 
            # if we expand this parameter list.
            for (buy_cutoff, sell_cutoff) in cutoffs:
                condition, created = MySimulationCondition.objects.get_or_create(
                    data_source=source,
                    sector=sector,
                    data_sort=1,  # descending
                    strategy=strategy,
                    strategy_value=strategy_value,
                    start=start,
                    end=end,
                    capital=capital,
                    per_trade=per_trade,
                    buy_cutoff=buy_cutoff,
                    sell_cutoff=sell_cutoff
                )
                conditions.append(condition)

    # simulation run!
    for condition in conditions:
        # if condition.data_source == 1 and strategy == 2:
        # MySimulationCondition is not json-able,
        # using python pickle instead. The downside of this is that
        # we are relying on a python-specif data format.
        # But it is safe in this context.
        if strategy == 2:
            # buy low sell high
            # Set is_update=True will remove all existing results first
            # and then rerun all simulations. This is necessary
            # because SP500 is gettting new data each day.
            backtesting_simulation_consumer.delay(
                cPickle.dumps(condition), is_update=True)
        else:
            # alpha
            # Because computing alpha index values are very time consuming,
            # so we are to skip existing results to save time. Ideally
            # we should set is_update=True to recompute from a clean sheet.
            backtesting_simulation_consumer.delay(
                cPickle.dumps(condition), is_update=False)