Example #1
0
    def write_flow_data(stn_ds, src_name, flow_scale=1.0):
        df = stn_ds.to_dataframe().reset_index()
        df['elapsed_minutes'] = (df.time.values - ref_date) / np.timedelta64(
            60, 's')
        df['salinity'] = 0 * df.flow_cms
        df['temperature'] = 20 + 0 * df.flow_cms

        if all_flows_unit:
            df['flow_cms'] = 1.0 + 0 * df.flow_cms
        else:
            df['flow_cms'] = flow_scale * df.flow_cms

        for quantity, suffix in [('dischargebnd', '_flow'),
                                 ('salinitybnd', '_salt'),
                                 ('temperaturebnd', '_temp')]:
            lines = [
                'QUANTITY=%s' % quantity,
                'FILENAME=%s%s.pli' % (src_name, suffix), 'FILETYPE=9',
                'METHOD=3', 'OPERAND=O', ""
            ]
            with open(old_bc_fn, 'at') as fp:
                fp.write("\n".join(lines))

            # read the pli back to know how to name the per-node timeseries
            feats = dio.read_pli(
                os.path.join(run_base_dir, "%s%s.pli" % (src_name, suffix)))
            feat = feats[0]  # just one polyline in the file

            if len(feat) == 3:
                node_names = feat[2]
            else:
                node_names = [""] * len(feat[1])

            for node_idx, node_name in enumerate(node_names):
                # if no node names are known, create the default name of <feature name>_0001
                if not node_name:
                    node_name = "%s%s_%04d" % (src_name, suffix, 1 + node_idx)

                tim_fn = os.path.join(run_base_dir, node_name + ".tim")

                columns = ['elapsed_minutes']
                if quantity == 'dischargebnd':
                    columns.append('flow_cms')
                elif quantity == 'salinitybnd':
                    columns.append('salinity')
                elif quantity == 'temperaturebnd':
                    columns.append('temperature')

                df.to_csv(tim_fn,
                          sep=' ',
                          index=False,
                          header=False,
                          columns=columns)
Example #2
0
    def set_grid_and_features(self):
        # For now the only difference is the DEM. If they diverge, might go
        # with separate grid directories instead (maybe with some common features)
        self.grid_dir=grid_dir=os.path.join(local_config.model_dir,"../grids/pesca_butano_v04")
        self.set_grid(os.path.join(grid_dir, f"pesca_butano_{self.terrain}_deep_bathy.nc"))
        self.add_gazetteer(os.path.join(grid_dir,"line_features.shp"))
        self.add_gazetteer(os.path.join(grid_dir,"point_features.shp"))
        self.add_gazetteer(os.path.join(grid_dir,"polygon_features.shp"))

        # Check for and install fixed_weirs
        # Updated to now force this, to avoid hidden discrepancies
        fixed_weir_fn=os.path.join(grid_dir,f"fixed_weirs-{self.terrain}.pliz")
        self.fixed_weirs=dio.read_pli(fixed_weir_fn)

        if self.slr!=0.0 and self.slr_raise_inlet:
            self.raise_inlet(self.slr)
Example #3
0
def add_ocean(run_base_dir,
              rel_bc_dir,
              run_start,
              run_stop,
              ref_date,
              static_dir,
              grid,
              old_bc_fn,
              all_flows_unit=False,
              lag_seconds=0.0,
              factor=1.0):
    """
    Ocean:
    Silvia used:
        Water level data from station 46214 (apparently from Yi Chao's ROMS?)
          no spatial variation
        Maybe salinity from Yi Chao ROMS?  That's what the thesis says, but the
        actual inputs look like constant 33
    Here I'm using data from NOAA Point Reyes.
        waterlevel, water temperature from Point Reyes.
    When temperature is not available, use constant 15 degrees

    factor: a scaling factor applied to tide data to adjust amplitude around MSL.
    lag_seconds: to shift ocean boundary condition in time, a positive value 
    applying it later in time.
    """
    # get a few extra days of data to allow for transients in the low pass filter.
    pad_time = np.timedelta64(5, 'D')

    if 1:
        if 0:  # This was temporary, while NOAA had an issue with their website.
            log.warning("TEMPORARILY USING FORT POINT TIDES")
            tide_gage = "9414290"  # Fort Point
        else:
            tide_gage = "9415020"  # Pt Reyes

        if common.cache_dir is None:
            tides_raw_fn = os.path.join(run_base_dir, rel_bc_dir,
                                        'tides-%s-raw.nc' % tide_gage)
            if not os.path.exists(tides_raw_fn):
                tides = noaa_coops.coops_dataset(
                    tide_gage,
                    run_start - pad_time,
                    run_stop + pad_time, ["water_level", "water_temperature"],
                    days_per_request=30)

                tides.to_netcdf(tides_raw_fn, engine='scipy')
            else:
                tides = xr.open_dataset(tides_raw_fn)
        else:
            # rely on caching within noaa_coops
            tides = noaa_coops.coops_dataset(
                tide_gage,
                run_start - pad_time,
                run_stop + pad_time, ["water_level", "water_temperature"],
                days_per_request='M',
                cache_dir=common.cache_dir)
    # Those retain station as a dimension of length 1 - drop that dimension
    # here:
    tides = tides.isel(station=0)

    # Fort Point mean tide range is 1.248m, vs. 1.193 at Point Reyes.
    # apply rough correction to amplitude.
    # S2 phase 316.2 at Pt Reyes, 336.2 for Ft. Point.
    # 20 deg difference for a 12h tide, or 30 deg/hr, so
    # that's a lag of 40 minutes.
    # First go I got this backwards, and wound up with lags
    # at Presidio and Alameda of 4600 and 4400s.  That was
    # with lag_seconds -= 40*60.
    # Also got amplitudes 13% high at Presidio, so further correction...
    if tide_gage == "9414290":
        #
        factor *= 1.193 / 1.248 * 1.0 / 1.13
        lag_seconds += 35 * 60.

    if 1:
        # Clean that up, fabricate salinity
        water_level = utils.fill_tidal_data(tides.water_level)

        # IIR butterworth.  Nicer than FIR, with minor artifacts at ends
        # 3 hours, defaults to 4th order.
        water_level[:] = filters.lowpass(water_level[:].values,
                                         utils.to_dnum(water_level.time),
                                         cutoff=3. / 24)

        if 1:  # apply factor:
            msl = 2.152 - 1.214  # MSL(m) - NAVD88(m) for Point Reyes
            if factor != 1.0:
                log.info("Scaling tidal forcing amplitude by %.3f" % factor)
            water_level[:] = msl + factor * (water_level[:].values - msl)

        if 1:  # apply lag
            if lag_seconds != 0.0:
                # sign:  if lag_seconds is positive, then I want the result
                # for time.values[0] to come from original data at time.valules[0]-lag_seconds
                if 0:  # Why interpolate here? Just alter the timebase.
                    water_level[:] = np.interp(
                        utils.to_dnum(tides.time.values),
                        utils.to_dnum(tides.time.values) -
                        lag_seconds / 86400., tides.water_level.values)
                else:
                    # Adjust time base directly.
                    water_level.time.values[:] = water_level.time.values + np.timedelta64(
                        lag_seconds, 's')

        if 'water_temperature' not in tides:
            log.warning(
                "Water temperature was not found in NOAA data.  Will use constant 15"
            )
            water_temp = 15 + 0 * tides.water_level
            water_temp.name = 'water_temperature'
        else:
            fill_data(tides.water_temperature)
            water_temp = tides.water_temperature

        if all_flows_unit:
            print("-=-=-=- USING 35 PPT WHILE TESTING! -=-=-=-")
            salinity = 35 + 0 * water_level
        else:
            salinity = 33 + 0 * water_level
        salinity.name = 'salinity'

    if 1:  # Write it all out
        # Add a stanza to FlowFMold_bnd.ext:
        src_name = 'Sea'

        src_feat = dio.read_pli(os.path.join(static_dir,
                                             '%s.pli' % src_name))[0]

        forcing_data = [('waterlevelbnd', water_level, '_ssh'),
                        ('salinitybnd', salinity, '_salt'),
                        ('temperaturebnd', water_temp, '_temp')]

        for quant, da, suffix in forcing_data:
            with open(old_bc_fn, 'at') as fp:
                lines = [
                    "QUANTITY=%s" % quant,
                    "FILENAME=%s/%s%s.pli" % (rel_bc_dir, src_name, suffix),
                    "FILETYPE=9", "METHOD=3", "OPERAND=O", ""
                ]
                fp.write("\n".join(lines))

            feat_suffix = dio.add_suffix_to_feature(src_feat, suffix)
            dio.write_pli(
                os.path.join(run_base_dir, rel_bc_dir,
                             '%s%s.pli' % (src_name, suffix)), [feat_suffix])

            # Write the data:
            columns = ['elapsed_minutes', da.name]

            df = da.to_dataframe().reset_index()
            df['elapsed_minutes'] = (df.time.values -
                                     ref_date) / np.timedelta64(60, 's')

            if len(feat_suffix) == 3:
                node_names = feat_suffix[2]
            else:
                node_names = [""] * len(feat_suffix[1])

            for node_idx, node_name in enumerate(node_names):
                # if no node names are known, create the default name of <feature name>_0001
                if not node_name:
                    node_name = "%s%s_%04d" % (src_name, suffix, 1 + node_idx)

                tim_fn = os.path.join(run_base_dir, rel_bc_dir,
                                      node_name + ".tim")
                df.to_csv(tim_fn,
                          sep=' ',
                          index=False,
                          header=False,
                          columns=columns)
Example #4
0
def add_delta_inflow(mdu,
                     rel_bc_dir,
                     static_dir,
                     grid,
                     dredge_depth,
                     all_flows_unit=False,
                     temp_jersey=True,
                     temp_rio=True):
    """
    Fetch river USGS river flows, add to FlowFM_bnd.ext:
    Per Silvia's Thesis:
    Jersey: Discharge boundary affected by tides, discharge and temperature taken
    from USGS 11337190 SAN JOAQUIN R A JERSEY POINT, 0 salinity
    (Note that Dutch Slough should probably be added in here)
    Rio Vista: 11455420 SACRAMENTO A RIO VISTA, temperature from DWR station RIV.
    0 salinity.

    run_base_dir: location of the DFM inputs
    run_start,run_stop: target period for therun
    statiC_dir: path to static assets, specifically Jersey.pli and RioVista.pli
    grid: UnstructuredGrid instance, to be modified at inflow locations
    old_bc_fn: path to old-style boundary forcing file
    all_flows_unit: if True, override all flows to be 1 m3 s-1 for model diagnostics
    """

    # get run directory and time and forcing file info
    run_base_dir = mdu.base_path
    ref_date, run_start, run_stop = mdu.time_range()
    old_bc_fn = mdu.filepath(["external forcing", "ExtForceFile"])

    pad = np.timedelta64(3, 'D')

    if 1:
        # Cache the original data from USGS, then clean it and write to DFM format
        jersey_raw_fn = os.path.join(run_base_dir, rel_bc_dir, 'jersey-raw.nc')
        if not os.path.exists(jersey_raw_fn):
            if temp_jersey == True:
                jersey_raw = usgs_nwis.nwis_dataset(
                    station="11337190",
                    start_date=run_start - pad,
                    end_date=run_stop + pad,
                    products=[
                        60,  # "Discharge, cubic feet per second"
                        10
                    ],  # "Temperature, water, degrees Celsius"
                    days_per_request=30)
                jersey_raw.to_netcdf(jersey_raw_fn, engine='scipy')
            if temp_jersey == False:
                jersey_raw = usgs_nwis.nwis_dataset(
                    station="11337190",
                    start_date=run_start - pad,
                    end_date=run_stop + pad,
                    products=[60],  # "Discharge, cubic feet per second" 
                    days_per_request=30)
                jersey_raw.to_netcdf(jersey_raw_fn, engine='scipy')

        rio_vista_raw_fn = os.path.join(run_base_dir, rel_bc_dir,
                                        'rio_vista-raw.nc')
        if not os.path.exists(rio_vista_raw_fn):
            if temp_rio == True:
                rio_vista_raw = usgs_nwis.nwis_dataset(
                    station="11455420",
                    start_date=run_start - pad,
                    end_date=run_stop + pad,
                    products=[
                        60,  # "Discharge, cubic feet per second"
                        10
                    ],  # "Temperature, water, degrees Celsius"
                    days_per_request=30)
                rio_vista_raw.to_netcdf(rio_vista_raw_fn, engine='scipy')
            if temp_rio == False:
                rio_vista_raw = usgs_nwis.nwis_dataset(
                    station="11455420",
                    start_date=run_start - pad,
                    end_date=run_stop + pad,
                    products=[60],  # "Discharge, cubic feet per second"
                    days_per_request=30)
                rio_vista_raw.to_netcdf(rio_vista_raw_fn, engine='scipy')

    if 1:  # Clean and write it all out
        jersey_raw = xr.open_dataset(jersey_raw_fn)
        rio_vista_raw = xr.open_dataset(rio_vista_raw_fn)
        temp_logical = [temp_jersey, temp_rio]
        i = 0
        for src_name, source in [('Jersey', jersey_raw),
                                 ('RioVista', rio_vista_raw)]:
            src_feat = dio.read_pli(
                os.path.join(static_dir, '%s.pli' % src_name))[0]
            dredge_grid.dredge_boundary(grid, src_feat[1], dredge_depth)

            if temp_logical[i] == True:
                # Add stanzas to FlowFMold_bnd.ext:
                for quant, suffix in [('dischargebnd', '_flow'),
                                      ('salinitybnd', '_salt'),
                                      ('temperaturebnd', '_temp')]:
                    with open(old_bc_fn, 'at') as fp:
                        lines = [
                            "QUANTITY=%s" % quant,
                            "FILENAME=%s/%s%s.pli" %
                            (rel_bc_dir, src_name, suffix), "FILETYPE=9",
                            "METHOD=3", "OPERAND=O", ""
                        ]
                        fp.write("\n".join(lines))

                    feat_suffix = dio.add_suffix_to_feature(src_feat, suffix)
                    dio.write_pli(
                        os.path.join(run_base_dir, rel_bc_dir,
                                     '%s%s.pli' % (src_name, suffix)),
                        [feat_suffix])

                    # Write the data:
                    if quant == 'dischargebnd':
                        da = source.stream_flow_mean_daily
                        da2 = utils.fill_tidal_data(da)
                        if all_flows_unit:
                            da2.values[:] = 1.0
                        else:
                            # convert ft3/s to m3/s
                            da2.values[:] *= 0.028316847
                    elif quant == 'salinitybnd':
                        da2 = source.stream_flow_mean_daily.copy(deep=True)
                        da2.values[:] = 0.0
                    elif quant == 'temperaturebnd':
                        da = source.temperature_water
                        da2 = utils.fill_tidal_data(
                            da)  # maybe safer to just interpolate?
                        if all_flows_unit:
                            da2.values[:] = 20.0

                    df = da2.to_dataframe().reset_index()
                    df['elapsed_minutes'] = (
                        df.time.values - ref_date) / np.timedelta64(60, 's')
                    columns = ['elapsed_minutes', da2.name]

                    if len(feat_suffix) == 3:
                        node_names = feat_suffix[2]
                    else:
                        node_names = [""] * len(feat_suffix[1])

                    for node_idx, node_name in enumerate(node_names):
                        # if no node names are known, create the default name of <feature name>_0001
                        if not node_name:
                            node_name = "%s%s_%04d" % (src_name, suffix,
                                                       1 + node_idx)

                        tim_fn = os.path.join(run_base_dir, rel_bc_dir,
                                              node_name + ".tim")
                        df.to_csv(tim_fn,
                                  sep=' ',
                                  index=False,
                                  header=False,
                                  columns=columns)

            if temp_logical[i] == False:
                # Add stanzas to FlowFMold_bnd.ext:
                for quant, suffix in [('dischargebnd', '_flow'),
                                      ('salinitybnd', '_salt')]:
                    with open(old_bc_fn, 'at') as fp:
                        lines = [
                            "QUANTITY=%s" % quant,
                            "FILENAME=%s/%s%s.pli" %
                            (rel_bc_dir, src_name, suffix), "FILETYPE=9",
                            "METHOD=3", "OPERAND=O", ""
                        ]
                        fp.write("\n".join(lines))

                    feat_suffix = dio.add_suffix_to_feature(src_feat, suffix)
                    dio.write_pli(
                        os.path.join(run_base_dir, rel_bc_dir,
                                     '%s%s.pli' % (src_name, suffix)),
                        [feat_suffix])

                    # Write the data:
                    if quant == 'dischargebnd':
                        da = source.stream_flow_mean_daily
                        da2 = utils.fill_tidal_data(da)
                        if all_flows_unit:
                            da2.values[:] = 1.0
                        else:
                            # convert ft3/s to m3/s
                            da2.values[:] *= 0.028316847
                    elif quant == 'salinitybnd':
                        da2 = source.stream_flow_mean_daily.copy(deep=True)
                        da2.values[:] = 0.0

                    df = da2.to_dataframe().reset_index()
                    df['elapsed_minutes'] = (
                        df.time.values - ref_date) / np.timedelta64(60, 's')
                    columns = ['elapsed_minutes', da2.name]

                    if len(feat_suffix) == 3:
                        node_names = feat_suffix[2]
                    else:
                        node_names = [""] * len(feat_suffix[1])

                    for node_idx, node_name in enumerate(node_names):
                        # if no node names are known, create the default name of <feature name>_0001
                        if not node_name:
                            node_name = "%s%s_%04d" % (src_name, suffix,
                                                       1 + node_idx)

                        tim_fn = os.path.join(run_base_dir, rel_bc_dir,
                                              node_name + ".tim")
                        df.to_csv(tim_fn,
                                  sep=' ',
                                  index=False,
                                  header=False,
                                  columns=columns)
            i += 1
Example #5
0
dredge_depth = -1
# sfb_dfm_v2_base_dir="../../sfb_dfm_v2"
adjusted_pli_fn = 'nudged_features.pli'

if include_fresh:
    # ---------SF FRESH
    if 0:  # BAHM data
        # SF Bay Freshwater and POTW, copied from sfb_dfm_v2:
        # features which have manually set locations for this grid
        # Borrow files from sfb_dfm_v2 -- should switch to submodules

        if 1:  # Transcribe to shapefile for debugging/vis
            from shapely import geometry
            from stompy.spatial import wkb2shp
            adj_pli_feats = dio.read_pli(adjusted_pli_fn)
            names = [feat[0] for feat in adj_pli_feats]
            geoms = [
                geometry.Point(feat[1].mean(axis=0)) for feat in adj_pli_feats
            ]
            wkb2shp.wkb2shp('derived/input_locations.shp',
                            geoms,
                            fields={'name': names},
                            overwrite=True)

        # kludge - wind the clock back a bit:
        print("TOTAL KLUDGE ON FRESHWATER")
        from sfb_dfm_utils import sfbay_freshwater

        # This will pull freshwater data from 2012, where we already
        # have a separate run which kind of makes sense
Example #6
0
def add_sfbay_potw(mdu,
                   rel_src_dir, # added rel_src_dir alliek dec 2020
                   potw_dir,
                   adjusted_pli_fn,
                   grid,dredge_depth,
                   all_flows_unit=False,
                   time_offset=None,
                   write_salt=True,write_temp=True):
    """
    time_offset: shift all dates by the given offset.  To run 2016 
    with data from 2015, specify np.timedelta64(-365,'D')

    write_salt: leave as True for older DFM, and newer DFM only set to
    true when the simulation includes salinity.

    write_temp: same, but for temperature
    """
    run_base_dir=mdu.base_path
    ref_date,run_start,run_stop = mdu.time_range()
    old_bc_fn=mdu.filepath(["external forcing","ExtForceFile"])

    if time_offset is not None:
        run_start = run_start + time_offset
        run_stop = run_stop + time_offset
        ref_date = ref_date + time_offset
        
    potws=xr.open_dataset(os.path.join(potw_dir,'outputs','sfbay_delta_potw.nc'))
    adjusted_features=dio.read_pli(adjusted_pli_fn)

    # select a time subset of the flow data, starting just before the
    # simulation period, and running beyond the end:
    time_pnts = np.searchsorted(potws.time, [run_start-DAY,run_stop+DAY])
    time_pnts = time_pnts.clip(0,len(potws.time)-1)
    time_idxs=range(time_pnts[0],time_pnts[1]) # enumerate them for loops below

    with open(old_bc_fn,'at') as fp:
        for site in potws.site.values:
            # NB: site is bytes at this point
            potw=potws.sel(site=site)
            try:
                site_s=site.decode()
            except AttributeError:
                site_s=site # py2

            if site_s in ['false_sac','false_sj']:
                six.print_("(skip %s) "%site_s,end="")
                continue

            if potw.utm_x.values.mean() > 610200:
                # Delta POTWs are in this file, too, but not in this
                # grid.  Luckily they are easy to identify based on
                # x coordinate.
                six.print_("(skip %s -- too far east) "%site_s,end="")
                continue
            
            six.print_("%s "%site_s,end="")

            fp.write( ("QUANTITY=discharge_salinity_temperature_sorsin\n"
                       "FILENAME=%s/%s.pli\n"
                       "FILETYPE=9\n"
                       "METHOD=1\n"
                       "OPERAND=O\n"
                       "AREA=0 # no momentum\n"
                       "\n")%(rel_src_dir,site_s) ) # added rel_src_dir alliek dec 2020

            # Write the location - writing a single point appears to work,
            # based on how it shows up in the GUI.  Otherwise we'd have to
            # manufacture a point outside the domain.
            with open(os.path.join(run_base_dir,rel_src_dir,'%s.pli'%site_s),'wt') as pli_fp: # added rel_src_dir alliek dec 2020
                # Scan adjusted features for a match to use instead
                # This is handled slightly differently with POTWs - use the

                # put the depth at -50, should be at the bed
                feat=[site_s,
                      np.array([[potw.utm_x.values,potw.utm_y.values,-50.0]]),
                      ['']]

                for adj_feat in adjusted_features:
                    if adj_feat[0] == site_s:
                        # Merge them if the adjusted feature is more than 10 m away
                        # (to allow for some rounding in the ascii round-trip.)
                        offset=utils.dist( adj_feat[1][-1][:2] - feat[1][-1][:2] )
                        if offset > 10.0:
                            # Just add on the extra point - but may have to promote one 
                            # or the other to 3D.
                            old_geo=feat[1]
                            new_geo=adj_feat[1][-1:]
                            if old_geo.shape[1] != new_geo.shape[1]:
                                if old_geo.shape[1]<3:
                                    old_geo=np.concatenate( (old_geo,0*old_geo[:,:1]), axis=1)
                                else:
                                    # copy depth from old_geo
                                    new_geo=np.concatenate( (new_geo,
                                                             old_geo[-1,-1]+0*new_geo[:,:1]),
                                                            axis=1)

                            # if the original feature was outside the grid, then all is well,
                            # and it will show up in the GUI as a line from the original location
                            # outside the domain to the new location in the domain.
                            if grid.select_cells_nearest(old_geo[-1,:2],inside=True) is None:
                                feat[1]=np.concatenate( (old_geo,new_geo),axis=0 )
                                if len(feat)==3: # includes labels, but they don't matter here, right?
                                    feat[2].append('')
                            else:
                                # but if the original location is inside the grid, this will be interpreted
                                # as a sink-source pair, so we instead just put the single, adjusted
                                # location in.  This is done after potentially copying z-coordinate
                                # data from the original location.
                                feat[1]=new_geo
                        break

                dio.write_pli(pli_fp,[feat])

                dredge_grid.dredge_discharge(grid,feat[1],dredge_depth)

            with open(os.path.join(run_base_dir,rel_src_dir,'%s.tim'%site_s),'wt') as tim_fp: # added rel_src_dir alliek dec 2020
                for tidx in time_idxs:
                    tstamp_minutes = (potw.time[tidx]-ref_date) / np.timedelta64(1,'m')

                    if all_flows_unit:
                        flow_cms=1.0
                    else:
                        flow_cms=potw.flow[tidx]

                    items=[tstamp_minutes,flow_cms]
                    if write_salt:
                        items.append(0.0)
                    if write_temp:
                        items.append(20.0)

                    tim_fp.write(" ".join(["%g"%v for v in items])+"\n")

    six.print_("Done with POTWs")
Example #7
0
import os
from stompy.spatial import wkb2shp
import stompy.model.delft.io as dio
from shapely import geometry
import glob

##

shp_dest = 'gis/model-features.shp'

names = []
geoms = []

for fn in glob.glob('*.pli'):
    feats = dio.read_pli(fn)
    for feat in feats:  # generally just one per file
        names.append(feat[0])
        geoms.append(geometry.LineString(feat[1]))

wkb2shp.wkb2shp("gis/model-features.shp", geoms, fields=dict(names=names))

# AmericanRiver.pli
# Barker_Pumping_Plant.pli
# DXC.pli
# FlowFMcrs.pli
# Georgiana.pli
# SacramentoRiver.pli
# SRV.pli

##
Example #8
0
def add_sfbay_freshwater(mdu,
                         adjusted_pli_fn,
                         freshwater_dir,
                         grid,
                         dredge_depth,
                         all_flows_unit=False,
                         time_offset=None):
    """
    Add freshwater flows from sfbay_freshwater git submodule.
    run_base_dir: location of DFM input files
    run_start,run_stop: target period for run, as np.datetime64
    ref_date: DFM reference date, as np.datetime64[D]
    adjusted_pli_fn: path to pli file to override source locations
    freshwater_dir: path to sfbay_freshwater git submodule
    grid: UnstructuredGrid instance to be modified at input locations
    old_bc_fn: path to old-style forcing input file

    time_offset: pull freshwater flows from this timedelta off from the
    specified.  I.e. if your run is really 2016, but you want 2015 flows,
    specify np.timedelta64(-365,'D').
    Slightly safer to use days than years here.
    """
    run_base_dir = mdu.base_path
    ref_date, run_start, run_stop = mdu.time_range()
    old_bc_fn = mdu.filepath(["external forcing", "ExtForceFile"])

    if time_offset is not None:
        run_start = run_start + time_offset
        run_stop = run_stop + time_offset
        ref_date = ref_date + time_offset

    def write_flow_data(stn_ds, src_name, flow_scale=1.0):
        df = stn_ds.to_dataframe().reset_index()
        df['elapsed_minutes'] = (df.time.values - ref_date) / np.timedelta64(
            60, 's')
        df['salinity'] = 0 * df.flow_cms
        df['temperature'] = 20 + 0 * df.flow_cms

        if all_flows_unit:
            df['flow_cms'] = 1.0 + 0 * df.flow_cms
        else:
            df['flow_cms'] = flow_scale * df.flow_cms

        for quantity, suffix in [('dischargebnd', '_flow'),
                                 ('salinitybnd', '_salt'),
                                 ('temperaturebnd', '_temp')]:
            lines = [
                'QUANTITY=%s' % quantity,
                'FILENAME=%s%s.pli' % (src_name, suffix), 'FILETYPE=9',
                'METHOD=3', 'OPERAND=O', ""
            ]
            with open(old_bc_fn, 'at') as fp:
                fp.write("\n".join(lines))

            # read the pli back to know how to name the per-node timeseries
            feats = dio.read_pli(
                os.path.join(run_base_dir, "%s%s.pli" % (src_name, suffix)))
            feat = feats[0]  # just one polyline in the file

            if len(feat) == 3:
                node_names = feat[2]
            else:
                node_names = [""] * len(feat[1])

            for node_idx, node_name in enumerate(node_names):
                # if no node names are known, create the default name of <feature name>_0001
                if not node_name:
                    node_name = "%s%s_%04d" % (src_name, suffix, 1 + node_idx)

                tim_fn = os.path.join(run_base_dir, node_name + ".tim")

                columns = ['elapsed_minutes']
                if quantity == 'dischargebnd':
                    columns.append('flow_cms')
                elif quantity == 'salinitybnd':
                    columns.append('salinity')
                elif quantity == 'temperaturebnd':
                    columns.append('temperature')

                df.to_csv(tim_fn,
                          sep=' ',
                          index=False,
                          header=False,
                          columns=columns)

    adjusted_features = dio.read_pli(adjusted_pli_fn)
    # Add the freshwater flows - could come from erddap, but use github submodule
    # for better control on version

    # create a pair of bc and pli files, each including all the sources.
    # exact placement will
    # be done by hand in the GUI

    full_flows_ds = xr.open_dataset(
        os.path.join(freshwater_dir, 'outputs', 'sfbay_freshwater.nc'))
    # period of the full dataset which will be include for this run
    sel = (full_flows_ds.time > run_start - 5 * DAY) & (full_flows_ds.time <
                                                        run_stop + 5 * DAY)
    flows_ds = full_flows_ds.isel(time=sel)

    nudge_by_gage(flows_ds, '11169025', station='SCLARAVCc', decorr_days=20)
    nudge_by_gage(flows_ds, '11180700', station='UALAMEDA', decorr_days=20)

    if 1:  # Special handling for Mowry Slough
        mowry_feat = None
        src_name = "MOWRY"
        for adj_feat in adjusted_features:
            if adj_feat[0] == src_name:
                mowry_feat = adj_feat

                # Write copies for flow, salinity and temperatures
                for suffix in ['_flow', '_salt', '_temp']:
                    # function to add suffix
                    feat_suffix = dio.add_suffix_to_feature(mowry_feat, suffix)
                    pli_fn = os.path.join(run_base_dir,
                                          "%s%s.pli" % (src_name, suffix))
                    dio.write_pli(pli_fn, [feat_suffix])

                dredge_grid.dredge_boundary(grid, mowry_feat[1], dredge_depth)

    for stni in range(len(flows_ds.station)):
        stn_ds = flows_ds.isel(station=stni)

        src_name = stn_ds.station.item(
        )  # kind of a pain to get scalar values back out...

        # At least through the GUI, pli files must have more than one node.
        # Don't get too big for our britches, just stick a second node 50m east
        # if the incoming data is a point, but check for manually set locations
        # in adjusted_features
        if 1:  #-- Write a PLI file
            feat = (src_name,
                    np.array([[stn_ds.utm_x, stn_ds.utm_y],
                              [stn_ds.utm_x + 50.0, stn_ds.utm_y]]))
            # Scan adjusted features for a match to use instead
            for adj_feat in adjusted_features:
                if adj_feat[0] == src_name:
                    feat = adj_feat
                    break
            # Write copies for flow, salinity and temperatures
            for suffix in ['_flow', '_salt', '_temp']:
                # function to add suffix
                feat_suffix = dio.add_suffix_to_feature(feat, suffix)
                pli_fn = os.path.join(run_base_dir,
                                      "%s%s.pli" % (src_name, suffix))
                dio.write_pli(pli_fn, [feat_suffix])

            dredge_grid.dredge_boundary(grid, feat[1], dredge_depth)

        if 1:  #-- Write the time series and stanza in FlowFM_bnd.ext
            if src_name == "EBAYS" and mowry_feat is not None:
                write_flow_data(stn_ds, src_name)
                # EBAYS watershed is something like 13000 acres.
                # don't worry about scaling back EBAYS, but add in some extra
                # here for MOWRY
                write_flow_data(stn_ds, "MOWRY", flow_scale=12.8 / 13000)
            else:
                write_flow_data(stn_ds, src_name)

    full_flows_ds.close()
def write_QST_data(mdu, stn_ds, src_name, time_offset=None):
    """
    write flow, salinity and temperature time series from an xarray 
    Dataset.
    mdu: MDUFile for the run.  expects ref_date, ExtForceFile, base_path.
    src_name: sanitized name for filenames and ExtForceFile.
    time_offset: offset to apply to stn_ds.time.  Note that the sign
    here is opposite of add_sfbay_freshwater, since it is being added
    to stn_ds, instead of start_date.  
    """

    old_bc_fn = mdu.filepath(('external forcing', 'ExtForceFile'))
    ref_date, run_start, run_stop = mdu.time_range()

    df = stn_ds.to_dataframe().reset_index()
    df['elapsed_minutes'] = (df.time.values - ref_date) / np.timedelta64(
        60, 's')
    # default values:
    df['salinity'] = 0 * df.flow_cms
    df['temperature'] = 20 + 0 * df.flow_cms

    assert np.all(np.isfinite(df.flow_cms))

    quant_suffix = [('dischargebnd', '_flow')]

    if mdu['physics', 'temperature']:
        quant_suffix.append(('temperaturebnd', '_temp'))
    if mdu['physics', 'salinity']:
        quant_suffix.append(('salinitybnd', '_salt'))

    for quantity, suffix in quant_suffix:
        lines = [
            'QUANTITY=%s' % quantity,
            'FILENAME=%s%s.pli' % (src_name, suffix), 'FILETYPE=9', 'METHOD=3',
            'OPERAND=O', ""
        ]
        with open(old_bc_fn, 'at') as fp:
            fp.write("\n".join(lines))

        # read the pli back to know how to name the per-node timeseries
        feats = dio.read_pli(
            os.path.join(mdu.base_path, "%s%s.pli" % (src_name, suffix)))
        feat = feats[0]  # just one polyline in the file

        if len(feat) == 3:
            node_names = feat[2]
        else:
            node_names = [""] * len(feat[1])

        for node_idx, node_name in enumerate(node_names):
            # if no node names are known, create the default name of <feature name>_0001
            if not node_name:
                node_name = "%s%s_%04d" % (src_name, suffix, 1 + node_idx)

            tim_fn = os.path.join(mdu.base_path, node_name + ".tim")

            columns = ['elapsed_minutes']
            if quantity == 'dischargebnd':
                columns.append('flow_cms')
            elif quantity == 'salinitybnd':
                columns.append('salinity')
            elif quantity == 'temperaturebnd':
                columns.append('temperature')

            df.to_csv(tim_fn,
                      sep=' ',
                      index=False,
                      header=False,
                      columns=columns)
            # To avoid hitting the limit of open files, only write the first
            # node.  It's not actually necessary here to write more than one.
            break
Example #10
0
##
de = np.zeros(g.Nedges(), np.float64)

c1 = e2c[:, 0].copy()
c2 = e2c[:, 1].copy()
c1[c1 < 0] = c2[c1 < 0]
c2[c2 < 0] = c1[c2 < 0]
de = np.maximum(g.cells['depth'][c1], g.cells['depth'][c2])
g.add_edge_field('edge_depth', de, on_exists='overwrite')

##

# load levee data:
levee_fn = 'grid-sfbay/SBlevees_tdk.pli'

levees = dio.read_pli(levee_fn)

##

from shapely import geometry


def pli_to_grid_edges(g, levees):
    """
    g: UnstructuredGrid
    levees: polylines in the format returned by stompy.model.delft.io.read_pli,
    i.e. a list of features
    [ 
      [ 'name', 
        [ [x,y,z,...],...], 
        ['node0',...]
Example #11
0
def plot_MDU(mdu_filename, gridpath): 
    #------------- script now takes over -------------------------------------------
    mdu_filename = Path(mdu_filename)
    base_dir     = mdu_filename.parent  # The assumption is that we'll find all our bc's in the same folder as the mdu.
    folder_dir   = base_dir / 'bc_figures'
    folder_dir.exists() or folder_dir.mkdir() 
    
    # Load in the grid  (assumption that it is the same grid.)
    from stompy.grid import unstructured_grid
    grid    = str(gridpath) # Load in shapefile of SFB 
    grid    = unstructured_grid.UnstructuredGrid.read_dfm(grid, cleanup=True)
    
    # Open MDU, strip time information using stompy functionality
    MDU = dio.MDUFile(filename=str(mdu_filename))
    t_ref, t_start, t_stop =  MDU.time_range() 
    
    
    # define shared plotting functions 
    def format_xaxis (axis):
        months = mdates.MonthLocator(interval = 2)  # every other month
        fmt = mdates.DateFormatter('%b/%Y')
        axis.xaxis.set_major_locator(months)
        axis.xaxis.set_major_formatter(fmt)
        axis.set_xlim(t_ref, t_stop)
        
    def save_image(fig, name):
        fullname = folder_dir / (name + '.png')
        fig.savefig(str(fullname), dpi = 300, bbox_inches='tight')
        print('Saved %s' % fullname)
        plt.close()
    
    # Section one
    #  Let's first read through the source_files (which seem to be the POTWs)
    
    sourcefolder = base_dir / 'source_files'
    PLIs = list(sourcefolder.glob('*.pli'))  # get a list of all the pli files in the directory
    
    # Iterate through each one. Note each pli file has a corresponding timeseries of data (*.tim)
    for bc in PLIs:
        print('Reading %s' % bc.stem)
        pli = dio.read_pli(str(bc))                      # read in the *.pli file  
        tim_filename = sourcefolder / (bc.stem + '.tim') # filename of corresponding timeseries
        tim = dio.read_dfm_tim(str(tim_filename), t_ref, time_unit='M', columns = ['flow','sal','temp']) 
    
        # Plot the data 
        fig = plt.figure(figsize=(11, 3))
        ax1 = fig.add_axes([0.05, 0.05, 0.68, 0.8])
        map_axis = fig.add_axes([0.55, 0.18, 0.6, 0.6])
        name = pli[0][0]
        ax1.set_title( name.capitalize() + ' (POTW Source)')
        ax1.plot(tim.time, tim.flow,'-', linewidth = 5, alpha = 0.5, color = 'skyblue')    
        ax1.grid(b = True, alpha = 0.25)
        ax1.set_ylabel("Flow (m$^3$/s)")
        format_xaxis(ax1)
        
        # Plot SFB map + location  
        grid.plot_edges(ax = map_axis, alpha = 0.8) 
        map_axis.axis('off')
        coords = pli[0][1] 
        for coord in coords:
            x, y = coord[0], coord[1] # There is a z coordinate we are ignoring here 
            map_axis.plot(x , y,'o', markersize= 11, color= 'orangered')
    
        # Quick check that temp/salinity are fixed:
        temp = set(tim.temp.values)
        sal  = set(tim.sal.values)
        if len(temp)>1 or len(sal)>1:
            print('sal or temp is NOT FIXED at %s' % bc.stem)
        else:
            label = 'Temperature is fixed at %d C\n Salinity is fixed at %d ppt' %  (temp.pop(), sal.pop())
            ax1.text(1.08, .05, label,  horizontalalignment='left',  verticalalignment='center', transform=ax1.transAxes, fontsize = 12)
        save_image(fig, name)
        
        
    '''
    NEXT : ONTO THE BOUNDARY CONDITIONS FOR THE INFLOWS / STREAMS CREEKS ETC
    
    The only tricky difference here is that these bc's are sometimes divided across multiple cells (aka,
    a big river might be split across 2 cell segments.... in this case, we look at the pli file (geometry) to see
    how many cells the BC is split across and then multiple discharge by the #/cells. We don't need to touch
    temperature (scalar) or salinity (concentration). 
    
    DFM should always divide evenly across cells (1/3 for 3 cells, 1/2 for 2 cells, so unless someone's 
    really decided to get creative with custom settings this assumption should hold)
    '''
    bcfolder = base_dir / 'bc_files'
    PLIs = list(bcfolder.glob('*.pli'))           
    for bc in PLIs:
    
        print('Reading %s' % bc.stem)
        # the way this works is that the bc is divided between multiple cells evenly. so we just take one and multiply by the number of poitns. 
        pli = dio.read_pli(str(bc))
        filenames  = pli[0][2]
        ncells = len(filenames)
        tim_filename = bcfolder / (filenames[0] + '.tim') # filename of corresponding timeseries
        tim = dio.read_dfm_tim(str(tim_filename), t_ref, time_unit='M', columns  = ['data']) #, columns = ['flow','sal','temp']) 
    
        # Plot the data 
        fig = plt.figure(figsize=(11, 3))
        ax1 = fig.add_axes([0.05, 0.05, 0.68, 0.8])
        map_axis = fig.add_axes([0.55, 0.18, 0.6, 0.6])
        name = pli[0][0]            # Name of the boundary condition
        ax1.set_title( name.capitalize() + ' (non-POTW source)')
        
        if 'flow' in name:
            ax1.set_ylabel("Flow (m$^3$/s)")
            tim.data.values = tim.data.values * ncells # multiply by # of segements inflow is divided across 
        elif 'salt' in name:
            ax1.set_ylabel("Salinity (PPT)")
        elif 'temp' in name:
            ax1.set_ylabel("Temperature (deg C)")
        elif 'ssh' in name:
            ax1.set_ylabel('Sea Surface Height Forcing (m)')
            
        format_xaxis(ax1)
        ax1.plot(tim.time, tim.data,'-', linewidth = 5, alpha = 0.5, color = 'skyblue')    
        ax1.grid(b = True, alpha = 0.25)
        # Plot SFB map + location  
        grid.plot_edges(ax = map_axis, alpha = 0.8) 
        map_axis.axis('off')
        coords = pli[0][1] 
        for coord in coords:
            x, y = coord[0], coord[1] # There is a z coordinate we are ignoring here
            map_axis.plot(x, y, 'o', markersize= 11, color= 'orangered')
        save_image(fig, name)
            
        print('Done plotting boundary conditions.')
Example #12
0
import stompy.model.delft.io as dio
from stompy.spatial import wkb2shp
from shapely import geometry

##

weirs = dio.read_pli('fixed_weirs-v02.pli')

geoms = [geometry.LineString(w[1][:, :2]) for w in weirs]

##

wkb2shp.wkb2shp('fixed_weirs-v02.shp', geoms)