def handler(event, context): function_name = "lambda_core" # dataset setting dataset_name = 'higgs' data_bucket = "higgs-10" dataset_type = "dense_libsvm" n_features = 30 tmp_table_name = "tmp-params" merged_table_name = "merged-params" key_col = "key" # hyper-parameters n_clusters = 10 n_epochs = 10 threshold = 0.0001 # training setting sync_mode = "reduce" # reduce or reduce_scatter n_workers = 10 # clear dynamodb table dynamo_client = dynamo_operator.get_client() tmp_tb = DynamoTable(dynamo_client, tmp_table_name) merged_tb = DynamoTable(dynamo_client, tmp_table_name) tmp_tb.clear(key_col) merged_tb.clear(key_col) # lambda payload payload = dict() payload['dataset'] = dataset_name payload['data_bucket'] = data_bucket payload['dataset_type'] = dataset_type payload['n_features'] = n_features payload['tmp_table_name'] = tmp_table_name payload['merged_table_name'] = merged_table_name payload['key_col'] = key_col payload['n_clusters'] = n_clusters payload['n_epochs'] = n_epochs payload['threshold'] = threshold payload['sync_mode'] = sync_mode payload['n_workers'] = n_workers # invoke functions lambda_client = boto3.client('lambda') for i in range(n_workers): payload['worker_index'] = i payload['file'] = '{}_{}'.format(i, n_workers) lambda_client.invoke(FunctionName=function_name, InvocationType='Event', Payload=json.dumps(payload))
def handler(event, context): start_time = time.time() # dataset setting file = event['file'] data_bucket = event['data_bucket'] dataset_type = event['dataset_type'] assert dataset_type == "dense_libsvm" n_features = event['n_features'] n_classes = event['n_classes'] n_workers = event['n_workers'] worker_index = event['worker_index'] tmp_table_name = event['tmp_table_name'] merged_table_name = event['merged_table_name'] key_col = event['key_col'] # training setting model_name = event['model'] optim = event['optim'] sync_mode = event['sync_mode'] assert model_name.lower() in MLModel.Linear_Models assert optim.lower() == Optimization.ADMM assert sync_mode.lower() in [ Synchronization.Reduce, Synchronization.Reduce_Scatter ] # hyper-parameter learning_rate = event['lr'] batch_size = event['batch_size'] n_epochs = event['n_epochs'] valid_ratio = event['valid_ratio'] n_admm_epochs = event['n_admm_epochs'] lam = event['lambda'] rho = event['rho'] print('data bucket = {}'.format(data_bucket)) print("file = {}".format(file)) print('number of workers = {}'.format(n_workers)) print('worker index = {}'.format(worker_index)) print('model = {}'.format(model_name)) print('optimization = {}'.format(optim)) print('sync mode = {}'.format(sync_mode)) s3_storage = S3Storage() dynamo_client = dynamo_operator.get_client() tmp_table = DynamoTable(dynamo_client, tmp_table_name) merged_table = DynamoTable(dynamo_client, merged_table_name) communicator = DynamoCommunicator(dynamo_client, tmp_table, merged_table, key_col, n_workers, worker_index) # Read file from s3 read_start = time.time() lines = s3_storage.load(file, data_bucket).read().decode('utf-8').split("\n") print("read data cost {} s".format(time.time() - read_start)) parse_start = time.time() dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type) print("parse data cost {} s".format(time.time() - parse_start)) preprocess_start = time.time() # Creating data indices for training and validation splits: dataset_size = len(dataset) indices = list(range(dataset_size)) split = int(np.floor(valid_ratio * dataset_size)) shuffle_dataset = True random_seed = 100 if shuffle_dataset: np.random.seed(random_seed) np.random.shuffle(indices) train_indices, val_indices = indices[split:], indices[:split] # Creating data samplers and loaders: train_sampler = SubsetRandomSampler(train_indices) valid_sampler = SubsetRandomSampler(val_indices) train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=train_sampler) n_train_batch = len(train_loader) validation_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=valid_sampler) print("preprocess data cost {} s, dataset size = {}".format( time.time() - preprocess_start, dataset_size)) model = linear_models.get_model(model_name, n_features, n_classes) z, u = initialize_z_and_u(model.linear.weight.data.size()) print("size of z = {}".format(z.shape)) print("size of u = {}".format(u.shape)) # Loss and Optimizer # Softmax is internally computed. # Set parameters to be updated. criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # Training the Model train_start = time.time() for admm_epoch in range(n_admm_epochs): print(">>> ADMM Epoch[{}]".format(admm_epoch)) admm_epoch_start = time.time() admm_epoch_cal_time = 0 admm_epoch_comm_time = 0 admm_epoch_test_time = 0 for epoch in range(n_epochs): epoch_start = time.time() epoch_loss = 0. for batch_index, (items, labels) in enumerate(train_loader): batch_start = time.time() items = Variable(items.view(-1, n_features)) labels = Variable(labels) # Forward + Backward + Optimize optimizer.zero_grad() outputs = model(items) classify_loss = criterion(outputs, labels) epoch_loss += classify_loss.item() u_z = torch.from_numpy(u) - torch.from_numpy(z) loss = classify_loss for name, param in model.named_parameters(): if name.split('.')[-1] == "weight": loss += rho / 2.0 * torch.norm(param + u_z, p=2) # loss = classify_loss + rho / 2.0 * torch.norm(torch.sum(model.linear.weight, u_z)) optimizer.zero_grad() loss.backward(retain_graph=True) optimizer.step() epoch_cal_time = time.time() - epoch_start admm_epoch_cal_time += epoch_cal_time # Test the Model test_start = time.time() n_test_correct = 0 n_test = 0 test_loss = 0 for items, labels in validation_loader: items = Variable(items.view(-1, n_features)) labels = Variable(labels) outputs = model(items) test_loss += criterion(outputs, labels).item() _, predicted = torch.max(outputs.data, 1) n_test += labels.size(0) n_test_correct += (predicted == labels).sum() epoch_test_time = time.time() - test_start admm_epoch_test_time += epoch_test_time print( 'Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, ' 'cal cost %.4f s, test cost %.4f s, accuracy of the model on the %d test samples: %d %%, loss = %f' % (epoch + 1, n_epochs, batch_index + 1, n_train_batch, time.time() - train_start, epoch_loss, time.time() - epoch_start, epoch_cal_time, epoch_test_time, n_test, 100. * n_test_correct / n_test, test_loss / n_test)) sync_start = time.time() w = model.linear.weight.data.numpy() w_shape = w.shape b = model.linear.bias.data.numpy() b_shape = b.shape u_shape = u.shape w_b = np.concatenate((w.flatten(), b.flatten())) u_w_b = np.concatenate((u.flatten(), w_b.flatten())) # admm does not support async if sync_mode == "reduce": u_w_b_merge = communicator.reduce_epoch(u_w_b, admm_epoch) elif sync_mode == "reduce_scatter": u_w_b_merge = communicator.reduce_scatter_epoch(u_w_b, admm_epoch) u_mean = u_w_b_merge[:u_shape[0] * u_shape[1]].reshape(u_shape) / float(n_workers) w_mean = u_w_b_merge[u_shape[0] * u_shape[1]: u_shape[0] * u_shape[1] + w_shape[0] * w_shape[1]]\ .reshape(w_shape) / float(n_workers) b_mean = u_w_b_merge[u_shape[0] * u_shape[1] + w_shape[0] * w_shape[1]:]\ .reshape(b_shape[0]) / float(n_workers) model.linear.weight.data = torch.from_numpy(w_mean) model.linear.bias.data = torch.from_numpy(b_mean) admm_epoch_comm_time += time.time() - sync_start if worker_index == 0: delete_start = time.time() communicator.delete_expired_epoch(admm_epoch) admm_epoch_comm_time += time.time() - delete_start # z, u, r, s = update_z_u(w, z, u, rho, num_workers, lam) # stop = check_stop(ep_abs, ep_rel, r, s, dataset_size, num_features, w, z, u, rho) # print("stop = {}".format(stop)) # z = num_workers * rho / (2 * lam + num_workers * rho) * (w + u_mean) z = update_z(w_mean, u_mean, rho, n_workers, lam) u = u + model.linear.weight.data.numpy() - z print( "ADMM Epoch[{}] finishes, cost {} s, cal cost {} s, sync cost {} s, test cost {} s" .format(admm_epoch, time.time() - admm_epoch_start, admm_epoch_cal_time, admm_epoch_comm_time, admm_epoch_test_time)) # Test the Model n_test_correct = 0 n_test = 0 test_loss = 0 for items, labels in validation_loader: items = Variable(items.view(-1, n_features)) labels = Variable(labels) outputs = model(items) test_loss += criterion(outputs, labels).item() _, predicted = torch.max(outputs.data, 1) n_test += labels.size(0) n_test_correct += (predicted == labels).sum() print( 'Train finish, time = %.4f, accuracy of the model on the %d test samples: %d %%, loss = %f' % (time.time() - train_start, n_test, 100. * n_test_correct / n_test, test_loss / n_test)) if worker_index == 0: s3_storage.clear(tmp_table_name) s3_storage.clear(merged_table_name) end_time = time.time() print("Elapsed time = {} s".format(end_time - start_time))
def handler(event, context): tuner_function_name = "lambda_tuner" trial_function_name = "lambda_trial" function_start = time.time() function_duration = 14 * 60 n_submit_trial = event.get('n_submit_trial', 0) # dataset setting dataset_name = 'higgs' data_bucket = "higgs-10" dataset_type = "dense_libsvm" # dense_libsvm or sparse_libsvm n_features = 30 n_classes = 2 tmp_bucket = "tmp-params" merged_bucket = "merged-params" # training setting model = "lr" # lr, svm, sparse_lr, or sparse_svm optim = "grad_avg" # grad_avg, model_avg, or admm sync_mode = "reduce" # async, reduce or reduce_scatter n_workers = 10 # tuner configs tuner_strategy = "random_search" tuner_concurrency = 5 lr_values = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10] lr_disc = DiscHyper("lr_discrete", lr_values) # hyper-parameters lr = 0.01 batch_size = 100000 n_epochs = 2 valid_ratio = .2 n_admm_epochs = 2 lam = 0.01 rho = 0.01 # clear s3 bucket s3_client = s3_operator.get_client() s3_operator.clear_bucket(s3_client, tmp_bucket) s3_operator.clear_bucket(s3_client, merged_bucket) # set dynamodb table recorder_table_name = "recoder" dynamo_client = dynamo_operator.get_client() recorder_tb = DynamoTable(dynamo_client, recorder_table_name) items = recorder_tb.list() print("{} items in the recorder".format(len(items))) # lambda payload payload = dict() payload['dataset'] = dataset_name payload['data_bucket'] = data_bucket payload['dataset_type'] = dataset_type payload['n_features'] = n_features payload['n_classes'] = n_classes payload['n_workers'] = n_workers payload['tmp_bucket'] = tmp_bucket payload['merged_bucket'] = merged_bucket payload['model'] = model payload['optim'] = optim payload['sync_mode'] = sync_mode payload['lr'] = lr payload['batch_size'] = batch_size payload['n_epochs'] = n_epochs payload['valid_ratio'] = valid_ratio payload['n_admm_epochs'] = n_admm_epochs payload['lambda'] = lam payload['rho'] = rho # invoke functions lambda_client = boto3.client('lambda') n_trial = 10 trial_counter = n_submit_trial for i in range(n_trial): n_recorder_items = len(recorder_tb.list()) n_running_tail = trial_counter - n_recorder_items while n_running_tail >= tuner_concurrency: time.sleep(1) n_recorder_items = len(recorder_tb.list()) n_running_tail = trial_counter - n_recorder_items for j in range(n_workers): payload = dict() payload['dataset'] = dataset_name payload['data_bucket'] = data_bucket payload['dataset_type'] = dataset_type payload['n_features'] = n_features payload['n_classes'] = n_classes payload['n_workers'] = n_workers payload['tmp_bucket'] = tmp_bucket payload['merged_bucket'] = merged_bucket payload['model'] = model payload['optim'] = optim payload['sync_mode'] = sync_mode payload['batch_size'] = batch_size payload['n_epochs'] = n_epochs payload['valid_ratio'] = valid_ratio payload['n_admm_epochs'] = n_admm_epochs payload['lambda'] = lam payload['rho'] = rho payload['function_name'] = trial_function_name payload['tmp_bucket'] = tmp_bucket + "-i" payload['merged_bucket'] = merged_bucket + "-i" payload['lr'] = lr_disc.next() if tuner_strategy == "grid_search" else lr_disc.sample() payload['worker_index'] = j payload['train_file'] = 'training_{}.pt'.format(j) payload['test_file'] = 'test.pt' lambda_client.invoke(FunctionName=trial_function_name, InvocationType='Event', Payload=json.dumps(payload)) trial_counter += 1 if time.time() - function_start > function_duration: # revoke itself print("Invoking the next round of tuner functions, total trials {}, submitted trials {}" .format(n_trial, trial_counter)) lambda_client = boto3.client('lambda') payload = { 'n_submit_trial': n_submit_trial } lambda_client.invoke(FunctionName=tuner_function_name, InvocationType='Event', Payload=json.dumps(payload))
def handler(event, context): # dataset data_bucket = event['data_bucket'] file = event['file'] dataset_type = event["dataset_type"] assert dataset_type == "dense_libsvm" n_features = event['n_features'] n_workers = event["n_workers"] worker_index = event['worker_index'] tmp_table_name = event['tmp_table_name'] merged_table_name = event['merged_table_name'] key_col = event['key_col'] # hyper-parameter n_clusters = event['n_clusters'] n_epochs = event["n_epochs"] threshold = event["threshold"] sync_mode = event["sync_mode"] assert sync_mode.lower() in [ Synchronization.Reduce, Synchronization.Reduce_Scatter ] print('data bucket = {}'.format(data_bucket)) print("file = {}".format(file)) print('number of workers = {}'.format(n_workers)) print('worker index = {}'.format(worker_index)) print('num clusters = {}'.format(n_clusters)) print('sync mode = {}'.format(sync_mode)) s3_storage = S3Storage() dynamo_client = dynamo_operator.get_client() tmp_table = DynamoTable(dynamo_client, tmp_table_name) merged_table = DynamoTable(dynamo_client, merged_table_name) communicator = DynamoCommunicator(dynamo_client, tmp_table, merged_table, key_col, n_workers, worker_index) # Reading data from S3 read_start = time.time() lines = s3_storage.load(file, data_bucket).read().decode('utf-8').split("\n") print("read data cost {} s".format(time.time() - read_start)) parse_start = time.time() dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type).ins_np data_type = dataset.dtype centroid_shape = (n_clusters, dataset.shape[1]) print("parse data cost {} s".format(time.time() - parse_start)) print("dataset type: {}, dtype: {}, Centroids shape: {}, num_features: {}". format(dataset_type, data_type, centroid_shape, n_features)) init_centroids_start = time.time() if worker_index == 0: centroids = dataset[0:n_clusters] merged_table.save(centroids.tobytes(), Prefix.KMeans_Init_Cent + "-1", key_col) else: centroid_bytes = (merged_table.load_or_wait( Prefix.KMeans_Init_Cent + "-1", key_col, 0.1))['value'].value centroids = centroid_bytes2np(centroid_bytes, n_clusters, data_type) if centroid_shape != centroids.shape: raise Exception("The shape of centroids does not match.") print("initialize centroids takes {} s".format(time.time() - init_centroids_start)) model = cluster_models.get_model(dataset, centroids, dataset_type, n_features, n_clusters) train_start = time.time() for epoch in range(n_epochs): epoch_start = time.time() # rearrange data points model.find_nearest_cluster() local_cent = model.get_centroids("numpy").reshape(-1) local_cent_error = np.concatenate( (local_cent.flatten(), np.array([model.error], dtype=np.float32))) epoch_cal_time = time.time() - epoch_start # sync local centroids and error epoch_comm_start = time.time() if sync_mode == "reduce": cent_error_merge = communicator.reduce_epoch( local_cent_error, epoch) elif sync_mode == "reduce_scatter": cent_error_merge = communicator.reduce_scatter_epoch( local_cent_error, epoch) cent_merge = cent_error_merge[:-1].reshape(centroid_shape) / float( n_workers) error_merge = cent_error_merge[-1] / float(n_workers) model.centroids = cent_merge model.error = error_merge epoch_comm_time = time.time() - epoch_comm_start print("one {} round cost {} s".format(sync_mode, epoch_comm_time)) print( "Epoch[{}] Worker[{}], error = {}, cost {} s, cal cost {} s, sync cost {} s" .format(epoch, worker_index, model.error, time.time() - epoch_start, epoch_cal_time, epoch_comm_time)) if model.error < threshold: break if worker_index == 0: tmp_table.clear(key_col) merged_table.clear(key_col) print("Worker[{}] finishes training: Error = {}, cost {} s".format( worker_index, model.error, time.time() - train_start)) return
def handler(event, context): function_name = "lambda_core" # dataset setting dataset_name = 'cifar10' data_bucket = "cifar10dataset" n_features = 32 * 32 n_classes = 10 tmp_table_name = "tmp-params" merged_table_name = "merged-params" cp_bucket = "cp-model" key_col = "key" # training setting model = "mobilenet" # mobilenet or resnet optim = "grad_avg" # grad_avg or model_avg sync_mode = "reduce" # async, reduce or reduce_scatter n_workers = 10 # hyper-parameters lr = 0.01 batch_size = 256 n_epochs = 5 start_epoch = 0 run_epochs = 3 # clear dynamodb table s3_storage = S3Storage() s3_storage.clear(cp_bucket) dynamo_client = dynamo_operator.get_client() tmp_tb = DynamoTable(dynamo_client, tmp_table_name) merged_tb = DynamoTable(dynamo_client, tmp_table_name) tmp_tb.clear(key_col) merged_tb.clear(key_col) # lambda payload payload = dict() payload['dataset'] = dataset_name payload['data_bucket'] = data_bucket payload['n_features'] = n_features payload['n_classes'] = n_classes payload['n_workers'] = n_workers payload['tmp_table_name'] = tmp_table_name payload['merged_table_name'] = merged_table_name payload['key_col'] = key_col payload['cp_bucket'] = cp_bucket payload['model'] = model payload['optim'] = optim payload['sync_mode'] = sync_mode payload['lr'] = lr payload['batch_size'] = batch_size payload['n_epochs'] = n_epochs payload['start_epoch'] = start_epoch payload['run_epochs'] = run_epochs payload['function_name'] = function_name # invoke functions lambda_client = boto3.client('lambda') for i in range(n_workers): payload['worker_index'] = i payload['train_file'] = 'training_{}.pt'.format(i) payload['test_file'] = 'test.pt' lambda_client.invoke(FunctionName=function_name, InvocationType='Event', Payload=json.dumps(payload))
def handler(event, context): start_time = time.time() # dataset setting train_file = event['train_file'] test_file = event['test_file'] data_bucket = event['data_bucket'] n_features = event['n_features'] n_classes = event['n_classes'] n_workers = event['n_workers'] worker_index = event['worker_index'] tmp_table_name = event['tmp_table_name'] merged_table_name = event['merged_table_name'] key_col = event['key_col'] cp_bucket = event['cp_bucket'] # training setting model_name = event['model'] optim = event['optim'] sync_mode = event['sync_mode'] assert model_name.lower() in MLModel.Deep_Models assert optim.lower() in [Optimization.Grad_Avg, Optimization.Model_Avg] assert sync_mode.lower() in Synchronization.All # hyper-parameter learning_rate = event['lr'] batch_size = event['batch_size'] n_epochs = event['n_epochs'] start_epoch = event['start_epoch'] run_epochs = event['run_epochs'] function_name = event['function_name'] print('data bucket = {}'.format(data_bucket)) print("train file = {}".format(train_file)) print("test file = {}".format(test_file)) print('number of workers = {}'.format(n_workers)) print('worker index = {}'.format(worker_index)) print('model = {}'.format(model_name)) print('optimization = {}'.format(optim)) print('sync mode = {}'.format(sync_mode)) print('start epoch = {}'.format(start_epoch)) print('run epochs = {}'.format(run_epochs)) print("Run function {}, round: {}/{}, epoch: {}/{} to {}/{}".format( function_name, int(start_epoch / run_epochs) + 1, math.ceil(n_epochs / run_epochs), start_epoch + 1, n_epochs, start_epoch + run_epochs, n_epochs)) s3_storage = S3Storage() dynamo_client = dynamo_operator.get_client() tmp_table = DynamoTable(dynamo_client, tmp_table_name) merged_table = DynamoTable(dynamo_client, merged_table_name) communicator = DynamoCommunicator(dynamo_client, tmp_table, merged_table, key_col, n_workers, worker_index) # download file from s3 local_dir = "/tmp/" read_start = time.time() s3_storage.download(data_bucket, train_file, os.path.join(local_dir, train_file)) s3_storage.download(data_bucket, test_file, os.path.join(local_dir, test_file)) print("download file from s3 cost {} s".format(time.time() - read_start)) train_set = torch.load(os.path.join(local_dir, train_file)) test_set = torch.load(os.path.join(local_dir, test_file)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_set, batch_size=100, shuffle=False) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') print("read data cost {} s".format(time.time() - read_start)) random_seed = 100 torch.manual_seed(random_seed) device = 'cpu' net = deep_models.get_models(model_name).to(device) # Loss and Optimizer # Softmax is internally computed. # Set parameters to be updated. optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate) # load checkpoint model if it is not the first round if start_epoch != 0: checked_file = 'checkpoint_{}.pt'.format(start_epoch - 1) s3_storage.download(cp_bucket, checked_file, os.path.join(local_dir, checked_file)) checkpoint_model = torch.load(os.path.join(local_dir, checked_file)) net.load_state_dict(checkpoint_model['model_state_dict']) optimizer.load_state_dict(checkpoint_model['optimizer_state_dict']) print("load checkpoint model at epoch {}".format(start_epoch - 1)) for epoch in range(start_epoch, min(start_epoch + run_epochs, n_epochs)): train_loss, train_acc = train_one_epoch(epoch, net, train_loader, optimizer, worker_index, communicator, optim, sync_mode) test_loss, test_acc = test(epoch, net, test_loader) print( 'Epoch: {}/{},'.format(epoch + 1, n_epochs), 'train loss: {}'.format(train_loss), 'train acc: {},'.format(train_acc), 'test loss: {}'.format(test_loss), 'test acc: {}.'.format(test_acc), ) if worker_index == 0: tmp_table.clear() merged_table.clear() # training is not finished yet, invoke next round if epoch < n_epochs - 1: checkpoint_model = { 'epoch': epoch, 'model_state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': train_loss.average } checked_file = 'checkpoint_{}.pt'.format(epoch) if worker_index == 0: torch.save(checkpoint_model, os.path.join(local_dir, checked_file)) s3_storage.upload_file(cp_bucket, checked_file, os.path.join(local_dir, checked_file)) print("checkpoint model at epoch {} saved!".format(epoch)) print( "Invoking the next round of functions. round: {}/{}, start epoch: {}, run epoch: {}" .format( int((epoch + 1) / run_epochs) + 1, math.ceil(n_epochs / run_epochs), epoch + 1, run_epochs)) lambda_client = boto3.client('lambda') payload = { 'train_file': event['train_file'], 'test_file': event['test_file'], 'data_bucket': event['data_bucket'], 'n_features': event['n_features'], 'n_classes': event['n_classes'], 'n_workers': event['n_workers'], 'worker_index': event['worker_index'], 'tmp_table_name': event['tmp_table_name'], 'merged_table_name': event['merged_table_name'], 'key_col': event['key_col'], 'cp_bucket': event['cp_bucket'], 'model': event['model'], 'optim': event['optim'], 'sync_mode': event['sync_mode'], 'lr': event['lr'], 'batch_size': event['batch_size'], 'n_epochs': event['n_epochs'], 'start_epoch': epoch + 1, 'run_epochs': event['run_epochs'], 'function_name': event['function_name'] } lambda_client.invoke(FunctionName=function_name, InvocationType='Event', Payload=json.dumps(payload)) end_time = time.time() print("Elapsed time = {} s".format(end_time - start_time))
def handler(event, context): function_name = "lambda_core" # dataset setting dataset_name = 'higgs' data_bucket = "higgs-10" dataset_type = "dense_libsvm" # dense_libsvm n_features = 30 n_classes = 2 tmp_table_name = "tmp-params" merged_table_name = "merged-params" key_col = "key" # training setting model = "lr" # lr, svm optim = "grad_avg" # grad_avg, model_avg, or admm sync_mode = "reduce" # async, reduce or reduce_scatter n_workers = 10 # hyper-parameters lr = 0.01 batch_size = 100000 n_epochs = 2 valid_ratio = .2 n_admm_epochs = 2 lam = 0.01 rho = 0.01 # clear dynamodb table dynamo_client = dynamo_operator.get_client() tmp_tb = DynamoTable(dynamo_client, tmp_table_name) merged_tb = DynamoTable(dynamo_client, tmp_table_name) tmp_tb.clear(key_col) merged_tb.clear(key_col) # lambda payload payload = dict() payload['dataset'] = dataset_name payload['data_bucket'] = data_bucket payload['dataset_type'] = dataset_type payload['n_features'] = n_features payload['n_classes'] = n_classes payload['n_workers'] = n_workers payload['tmp_table_name'] = tmp_table_name payload['merged_table_name'] = merged_table_name payload['key_col'] = key_col payload['model'] = model payload['optim'] = optim payload['sync_mode'] = sync_mode payload['lr'] = lr payload['batch_size'] = batch_size payload['n_epochs'] = n_epochs payload['valid_ratio'] = valid_ratio payload['n_admm_epochs'] = n_admm_epochs payload['lambda'] = lam payload['rho'] = rho # invoke functions lambda_client = boto3.client('lambda') for i in range(n_workers): payload['worker_index'] = i payload['file'] = '{}_{}'.format(i, n_workers) lambda_client.invoke(FunctionName=function_name, InvocationType='Event', Payload=json.dumps(payload))
def handler(event, context): tuner_function_name = "lambda_tuner" trial_function_name = "lambda_trial" function_start = time.time() function_duration = 14 * 60 n_submit_trial = event.get('n_submit_trial', 0) # dataset setting dataset_name = 'cifar10' data_bucket = "cifar10dataset" n_features = 32 * 32 n_classes = 10 host = "127.0.0.1" port = 11211 tmp_bucket = "tmp-params" merged_bucket = "merged-params" cp_bucket = "cp-model" # training setting model = "mobilenet" # mobilenet or resnet optim = "grad_avg" # grad_avg or model_avg sync_mode = "reduce" # async, reduce or reduce_scatter n_workers = 10 # tuner configs tuner_strategy = "random_search" tuner_concurrency = 5 lr_values = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10] lr_disc = DiscHyper("lr_discrete", lr_values) # hyper-parameters batch_size = 256 n_epochs = 5 start_epoch = 0 run_epochs = 3 # set dynamodb table recorder_table_name = "recoder" dynamo_client = dynamo_operator.get_client() recorder_tb = DynamoTable(dynamo_client, recorder_table_name) items = recorder_tb.list() print("{} items in the recorder".format(len(items))) # lambda payload payload = dict() payload['dataset'] = dataset_name payload['data_bucket'] = data_bucket payload['n_features'] = n_features payload['n_classes'] = n_classes payload['n_workers'] = n_workers payload['host'] = host payload['port'] = port payload['tmp_bucket'] = tmp_bucket payload['merged_bucket'] = merged_bucket payload['cp_bucket'] = cp_bucket payload['model'] = model payload['optim'] = optim payload['sync_mode'] = sync_mode payload['lr'] = lr payload['batch_size'] = batch_size payload['n_epochs'] = n_epochs payload['start_epoch'] = start_epoch payload['run_epochs'] = run_epochs payload['function_name'] = function_name # invoke functions lambda_client = boto3.client('lambda') for i in range(n_workers): payload['worker_index'] = i payload['train_file'] = 'training_{}.pt'.format(i) payload['test_file'] = 'test.pt' lambda_client.invoke(FunctionName=function_name, InvocationType='Event', Payload=json.dumps(payload)) # invoke functions lambda_client = boto3.client('lambda') n_trial = 10 trial_counter = n_submit_trial for i in range(n_trial): n_recorder_items = len(recorder_tb.list()) n_running_tail = trial_counter - n_recorder_items while n_running_tail >= tuner_concurrency: time.sleep(1) n_recorder_items = len(recorder_tb.list()) n_running_tail = trial_counter - n_recorder_items for j in range(n_workers): # lambda payload payload = dict() payload['dataset'] = dataset_name payload['data_bucket'] = data_bucket payload['n_features'] = n_features payload['n_classes'] = n_classes payload['n_workers'] = n_workers payload['host'] = host payload['port'] = port payload['model'] = model payload['optim'] = optim payload['sync_mode'] = sync_mode payload['lr'] = lr payload['batch_size'] = batch_size payload['n_epochs'] = n_epochs payload['start_epoch'] = start_epoch payload['run_epochs'] = run_epochs payload['function_name'] = function_name payload['tmp_bucket'] = tmp_bucket + "-i" payload['merged_bucket'] = merged_bucket + "-i" payload['cp_bucket'] = cp_bucket + "-i" payload['lr'] = lr_disc.next( ) if tuner_strategy == "grid_search" else lr_disc.sample() payload['worker_index'] = j payload['train_file'] = 'training_{}.pt'.format(j) payload['test_file'] = 'test.pt' lambda_client.invoke(FunctionName=trial_function_name, InvocationType='Event', Payload=json.dumps(payload)) trial_counter += 1 if time.time() - function_start > function_duration: # revoke itself print( "Invoking the next round of tuner functions, total trials {}, submitted trials {}" .format(n_trial, trial_counter)) lambda_client = boto3.client('lambda') payload = {'n_submit_trial': n_submit_trial} lambda_client.invoke(FunctionName=tuner_function_name, InvocationType='Event', Payload=json.dumps(payload))