def analyze(movie_name, mlist_name, settings_name):

    # Load parameters.
    parameters = params.ParametersPSFFFT().initFromFile(settings_name, warnings = False)

    # Create finding and fitting object.
    finder = findPeaksStd.initFindAndFit(parameters)

    # Create appropriate reader.
    if parameters.hasAttr("camera_offset"):
        frame_reader = analysisIO.FrameReaderStd(movie_file = movie_name,
                                                 parameters = parameters)
    else:
        frame_reader = analysisIO.FrameReaderSCMOS(movie_file = movie_name,
                                                   parameters = parameters)

    # Create movie reader (uses frame reader).
    movie_reader = analysisIO.MovieReader(frame_reader = frame_reader,
                                          parameters = parameters)
    
    # Create localization file writer.
    data_writer = analysisIO.DataWriterHDF5(data_file = mlist_name,
                                            parameters = parameters,
                                            sa_type = "PSF-FFT")
        
    std_analysis.standardAnalysis(finder,
                                  movie_reader,
                                  data_writer,
                                  parameters)
Example #2
0
def test_mspb_3():
    """
    Test (single) PSF measurement with drift.
    """

    # Make test movie.
    im_max = 1000.0
    n_pts = 10
    x = 7.0
    y = 11.0
    drift_xy = numpy.random.uniform(size=(n_pts, 2))

    psf_movie = storm_analysis.getPathOutputTest("psf_movie.tif")
    with tifffile.TiffWriter(psf_movie) as tf:
        for i in range(n_pts):
            image = dg.drawGaussiansXY((20, 20),
                                       numpy.array([x + drift_xy[i][0]]),
                                       numpy.array([y + drift_xy[i][1]]))
            image = image * im_max
            tf.save(image.astype(numpy.float32))

    # Parameters.
    p = params.ParametersDAO()
    p.changeAttr("camera_gain", 1.0)
    p.changeAttr("camera_offset", 0.0)

    # Frame reader.
    frdr = analysisIO.FrameReaderStd(movie_file=psf_movie, parameters=p)

    z_index = numpy.zeros(n_pts).astype(numpy.int) - 1
    z_index[0] = 0
    [psf0, samples] = mPSFUtils.measureSinglePSFBeads(frdr,
                                                      z_index,
                                                      6,
                                                      x + drift_xy[0][0],
                                                      y + drift_xy[0][1],
                                                      zoom=2)

    for i in range(1, n_pts):
        z_index = numpy.zeros(n_pts).astype(numpy.int) - 1
        z_index[i] = 0
        [psf, samples] = mPSFUtils.measureSinglePSFBeads(frdr,
                                                         z_index,
                                                         6,
                                                         x,
                                                         y,
                                                         drift_xy=drift_xy,
                                                         zoom=2)
        assert (numpy.max(numpy.abs(psf0 - psf) / numpy.max(psf)) < 0.05)
Example #3
0
def test_mspb_2():
    """
    Test (single) PSF measurement, no drift, recentering.

    The maximum relative difference is typically on the order of 2%.
    """

    # Make test movie.
    im_max = 1000.0
    x = 7.0 + numpy.random.uniform(size=10)
    y = 11.0 + numpy.random.uniform(size=10)

    psf_movie = storm_analysis.getPathOutputTest("psf_movie.tif")
    with tifffile.TiffWriter(psf_movie) as tf:
        for i in range(x.size):
            image = dg.drawGaussiansXY((20, 20), numpy.array([x[i]]),
                                       numpy.array([y[i]]))
            image = image * im_max
            tf.save(image.astype(numpy.float32))

    # Parameters.
    p = params.ParametersDAO()
    p.changeAttr("camera_gain", 1.0)
    p.changeAttr("camera_offset", 0.0)

    # Frame reader.
    frdr = analysisIO.FrameReaderStd(movie_file=psf_movie, parameters=p)

    z_index = numpy.zeros(x.size).astype(numpy.int) - 1
    z_index[0] = 0
    [psf0, samples] = mPSFUtils.measureSinglePSFBeads(frdr,
                                                      z_index,
                                                      6,
                                                      x[0],
                                                      y[0],
                                                      zoom=2)

    for i in range(1, x.size):
        z_index = numpy.zeros(x.size).astype(numpy.int) - 1
        z_index[i] = 0
        [psf, samples] = mPSFUtils.measureSinglePSFBeads(frdr,
                                                         z_index,
                                                         6,
                                                         x[i],
                                                         y[i],
                                                         zoom=2)
        assert (numpy.max(numpy.abs(psf0 - psf) / numpy.max(psf)) < 0.05)
Example #4
0
def analyze(movie_name, mlist_name, settings_name):

    # Load parameters.
    parameters = params.ParametersSpliner().initFromFile(settings_name,
                                                         warnings=False)

    # Check for v1.0 parameters.
    if not (parameters.hasAttr("camera_gain")
            or parameters.hasAttr("camera_calibration")):
        raise Exception(
            "Camera parameters are missing. Version 1.0 parameters?")

    # Create appropriate finding and fitting object.
    if (parameters.getAttr("use_fista", 0) != 0):
        parameters = params.ParametersSplinerFISTA().initFromFile(
            settings_name)
        finder = find_peaks_fista.initFindAndFit(parameters)
    else:
        parameters = params.ParametersSplinerSTD().initFromFile(settings_name)
        finder = find_peaks_std.initFindAndFit(parameters)

    # Create appropriate reader.
    if parameters.hasAttr("camera_offset"):
        frame_reader = analysisIO.FrameReaderStd(movie_file=movie_name,
                                                 parameters=parameters)
    else:
        frame_reader = analysisIO.FrameReaderSCMOS(movie_file=movie_name,
                                                   parameters=parameters)

    # Create movie reader (uses frame reader).
    movie_reader = analysisIO.MovieReader(frame_reader=frame_reader,
                                          parameters=parameters)

    # Create localization file writer.
    data_writer = analysisIO.DataWriterHDF5(data_file=mlist_name,
                                            parameters=parameters,
                                            sa_type="Spliner")

    std_analysis.standardAnalysis(finder, movie_reader, data_writer,
                                  parameters)
Example #5
0
def test_mspb_1():
    """
    Test (single) PSF measurement, no drift.
    """

    # Make test movie.
    x = 7.2
    y = 9.8
    psf_movie = storm_analysis.getPathOutputTest("psf_movie.tif")
    image = 1000.0 * dg.drawGaussiansXY(
        (20, 20), numpy.array([x]), numpy.array([y]))
    with tifffile.TiffWriter(psf_movie) as tf:
        for i in range(6):
            tf.save(image.astype(numpy.float32))

    # Parameters.
    p = params.ParametersDAO()
    p.changeAttr("camera_gain", 1.0)
    p.changeAttr("camera_offset", 0.0)

    # Frame reader.
    frdr = analysisIO.FrameReaderStd(movie_file=psf_movie, parameters=p)

    z_index = numpy.array([0, 1, 2, 2, -1, -1])
    [psf, samples] = mPSFUtils.measureSinglePSFBeads(frdr,
                                                     z_index,
                                                     6,
                                                     x,
                                                     y,
                                                     zoom=2)

    assert (numpy.allclose(samples, numpy.array([1, 1, 2])))
    for i in range(1, psf.shape[0]):
        assert (numpy.allclose(psf[0, :, :], psf[i, :, :] / samples[i]))

    if False:
        with tifffile.TiffWriter("psf.tif") as tf:
            for i in range(psf.shape[0]):
                tf.save(psf[i, :, :].astype(numpy.float32))
Example #6
0
def analyze(movie_name, mlist_name, settings_name):

    # Load parameters.
    parameters = params.ParametersDAO().initFromFile(settings_name)

    # Check for possibly v1.0 parameters.
    if not parameters.hasAttr("background_sigma"):
        raise Exception("Parameter 'background_sigma' is missing. Version 1.0 parameters?")
    
    # Create finding and fitting object.
    finder = find_peaks.initFindAndFit(parameters)

    # Create object for reading (non sCMOS) camera frames.
    
    movie_ext = os.path.splitext(movie_name)[1]
    if movie_ext == '.nd2':
        frame_reader = FrameReaderStdNd2(movie_file = movie_name,
                                         parameters = parameters)
    else:
        frame_reader = analysisIO.FrameReaderStd(movie_file = movie_name,
                                             parameters = parameters)

    # Create movie reader (uses frame_reader).
    movie_reader = analysisIO.MovieReader(frame_reader = frame_reader,
                                          parameters = parameters)

    # Create localization file writer.
    data_writer = analysisIO.DataWriterHDF5(data_file = mlist_name,
                                            parameters = parameters,
                                            sa_type = '3D-DAOSTORM')

    # Run the analysis.
    std_analysis.standardAnalysis(finder,
                                  movie_reader,
                                  data_writer,
                                  parameters)
Example #7
0
def measurePSFBeads(movie_name,
                    zfile_name,
                    beads_file,
                    psf_name,
                    aoi_size=12,
                    pixel_size=0.1,
                    refine=False,
                    z_range=0.6,
                    z_step=0.05):
    """
    movie_name - The name of the movie, presumably a z stack for PSF measurement.
    zfile_name - The text file containing the z offsets (in microns) for each frame.
    beads_file - The text file containing the locations of the beads.
    psf_name - The name of the file to save the measured PSF in (as a pickled Python dictionary).
    aoi_size - The AOI of interest in pixels. The final AOI is 2x this number.
    pixel_size - The pixel size in microns.
    refine - Align the measured PSF for each bead to the average PSF.
    z_range - The range the PSF should cover in microns.
    z_step - The z step size of the PSF.
    """
    # Load the z-offset information for the dax file.
    #
    #   This is a text file with one line per frame that contains the
    #   z-offset (in microns) for that frame. Each line is a space separated
    #   valid, z_pos pair. If valid if 0 the frame will be ignored,
    #   otherwise it will be used.
    #
    z_offsets = numpy.loadtxt(zfile_name)

    # Create array specifying what frame corresponds to what
    # Z slice in the PSF.
    #
    z_index = measurePSFUtils.makeZIndexArray(z_offsets, z_range, z_step)

    # Load the locations of the beads.
    #
    #   This is a text file the contains the locations of the beads that
    #   will be used to construct the PSF. Each line is a space separated
    #   x, y pair of bead locations (in pixels).
    #
    #   One way to create this file is to look at the bead movie with
    #   visualizer.py and record the center positions of several beads.
    #
    data = numpy.loadtxt(beads_file, ndmin=2)
    bead_x = data[:, 1] + 1
    bead_y = data[:, 0] + 1

    # Create a reader of the movie.
    #
    #   We assume that the bead stack was measured with a camera
    #   that does not have a large pixel to pixel variation in
    #   gain and offset. The offset and magnitude are not that
    #   important at we will estimate and subtract the offset
    #   and normalize 1.
    #

    # Movie (frame) reader.
    frame_reader = analysisIO.FrameReaderStd(movie_file=movie_name,
                                             camera_gain=1.0,
                                             camera_offset=0.0)

    # Measure PSFs for each bead.
    #
    total_samples = None
    psfs = []
    for i in range(bead_x.size):
        [psf, samples] = measurePSFUtils.measureSinglePSFBeads(frame_reader,
                                                               z_index,
                                                               aoi_size,
                                                               bead_x[i],
                                                               bead_y[i],
                                                               zoom=2)

        # Verify that we have at least one sample per section, because if
        # we don't this almost surely means something is wrong.
        if (i == 0):
            for j in range(samples.size):
                assert (samples[i] > 0), "No data for PSF z section " + str(i)

        # Normalize by the number of sample per z section.
        #for j in range(samples.size):
        #    psf[j,:,:] = psf[j,:,:]/samples[j]

        # Keep track of total number of samples.
        if total_samples is None:
            total_samples = samples
        else:
            total_samples += samples

        psfs.append(psf)

    # Set the PSF to have zero average on the X/Y boundaries. We are
    # matching the behavior of spliner.measure_psf here.
    #
    sum_psf = measurePSFUtils.sumPSF(psfs)
    for i in range(sum_psf.shape[0]):
        mean_edge = measurePSFUtils.meanEdge(sum_psf[i, :, :])
        for j in range(len(psfs)):
            psfs[j][i, :, :] -= mean_edge / float(len(psfs))

    # Align the PSFs to each other. This should hopefully correct for
    # any small errors in the input locations, and also for fields of
    # view that are not completely flat.
    #
    if refine:
        print("Refining PSF alignment.")

        # Normalize each PSF by the number of z sections.
        for psf in psfs:
            for i in range(samples.size):
                psf[i, :, :] = psf[i, :, :] / samples[i]

        [average_psf, i_score] = measurePSFUtils.alignPSFs(psfs)
    else:
        average_psf = measurePSFUtils.averagePSF(psfs)

    # Normalize PSF.
    #
    #   This normalizes the PSF so that sum of the absolute values
    #   of each section is 1.0. This only makes sense if the AOI is
    #   large enough to capture all the photons, which might not be
    #   true. Not clear how important this is as Spliner will fit
    #   for the height anyway.
    #
    for i in range(average_psf.shape[0]):
        print("z plane {0:0d} has {1:0d} samples".format(i, total_samples[i]))

        section_sum = numpy.sum(numpy.abs(average_psf[i, :, :]))

        # Do we need this test? We already check that we have at
        # least one sample per section.
        if (section_sum > 0.0):
            average_psf[i, :, :] = average_psf[i, :, :] / section_sum

    # Normalize to unity maximum height.
    if (numpy.max(average_psf) > 0.0):
        average_psf = average_psf / numpy.max(average_psf)
    else:
        print("Warning! Measured PSF maxima is zero or negative!")

    # Save PSF (in image form).
    if True:
        tif_name = os.path.splitext(psf_name)[0]
        with tifffile.TiffWriter(tif_name + "_beads.tif") as tf:
            for i in range(average_psf.shape[0]):
                tf.save(average_psf[i, :, :].astype(numpy.float32))

    # Save PSF.
    #
    #   For historical reasons all the PSF z values are in nanometers.
    #   At some point this should be fixed.
    #
    z_range = 1.0e+3 * z_range
    z_step = 1.0e+3 * z_step

    cur_z = -z_range
    z_vals = []
    for i in range(average_psf.shape[0]):
        z_vals.append(cur_z)
        cur_z += z_step

    psf_dict = {
        "psf": average_psf,
        "pixel_size": 0.5 * pixel_size,
        "type": "3D",
        "version": 1.0,
        "zmin": -z_range,
        "zmax": z_range,
        "zvals": z_vals
    }

    pickle.dump(psf_dict, open(psf_name, 'wb'))