Example #1
0
    def doFit(self, data):
        dist1 = 0
        dist2 = 0
        self.x_off1 = 0.0
        self.y_off1 = 0.0
        self.x_off2 = 0.0
        self.y_off2 = 0.0

        if self.fit_hl is None:
            self.fit_hl = saLPF.LockPeakFinder(offset=5.0,
                                               sigma=self.sigma,
                                               threshold=10)
            self.fit_hr = saLPF.LockPeakFinder(offset=5.0,
                                               sigma=self.sigma,
                                               threshold=10)

        total_good = 0
        [x1, y1, status] = self.fit_hl.findFitPeak(data[:, :self.half_x])
        if status:
            total_good += 1
            self.x_off1 = x1 - self.half_y
            self.y_off1 = y1 - self.half_x
            dist1 = abs(self.y_off1)

        [x2, y2, status] = self.fit_hr.findFitPeak(data[:, -self.half_x:])
        if status:
            total_good += 1
            self.x_off2 = x2 - self.half_y
            self.y_off2 = y2
            dist2 = abs(self.y_off2)

        return [total_good, dist1, dist2]
Example #2
0
    def __init__(self, parameters=None, **kwds):
        kwds["parameters"] = parameters
        super().__init__(**kwds)

        self.cnt = 0
        self.max_backlog = 20
        self.min_good = parameters.get("min_good")
        self.offset = parameters.get("offset")
        self.reps = parameters.get("reps")
        self.sum_scale = parameters.get("sum_scale")
        self.sum_zero = parameters.get("sum_zero")

        self.good = numpy.zeros(self.reps, dtype=numpy.bool)
        self.mag = numpy.zeros(self.reps)
        self.x_off = numpy.zeros(self.reps)
        self.y_off = numpy.zeros(self.reps)

        self.lpf = slpf.LockPeakFinder(offset=0,
                                       sigma=parameters.get("sigma"),
                                       threshold=parameters.get("threshold"))

        assert (self.reps >= self.min_good), "'reps' must be >= 'min_good'."