Example #1
0
def test_negative_densities():
    points = 10000
    h = StreamHist()
    data = make_normal(points)
    h.update(data)

    from numpy import linspace
    x = linspace(h.min(), h.max(), 100)
    assert all([h.pdf(t) >= 0. for t in x])
def test_negative_densities():
    points = 10000
    h = StreamHist()
    data = make_normal(points)
    h.update(data)

    from numpy import linspace
    x = linspace(h.min(), h.max(), 100)
    assert all([h.pdf(t) >= 0. for t in x])
Example #3
0
def test_min_max():
    h = StreamHist()
    assert h.min() is None
    assert h.max() is None

    for _ in range(1000):
        h.update(rand_int(10))

    assert h.min() == 0
    assert h.max() == 10

    h1 = StreamHist()
    h2 = StreamHist()
    for p in range(4):
        h1.update(p)
        h2.update(p + 2)
    merged = h1.merge(h2)

    assert merged.min() == 0
    assert merged.max() == 5
def test_min_max():
    h = StreamHist()
    assert h.min() is None
    assert h.max() is None

    for _ in range(1000):
        h.update(rand_int(10))

    assert h.min() == 0
    assert h.max() == 10

    h1 = StreamHist()
    h2 = StreamHist()
    for p in range(4):
        h1.update(p)
        h2.update(p+2)
    merged = h1.merge(h2)

    assert merged.min() == 0
    assert merged.max() == 5
Example #5
0
def test_histogram_exact():
    """A StreamHist which is not at capacity matches numpy statistics"""
    max_bins = 50
    points = [random.expovariate(1 / 5) for _ in range(max_bins)]
    h = StreamHist(max_bins)
    h.update(points)

    q = [i / 100 for i in range(101)]
    import numpy as np
    assert h.quantiles(*q) == approx(np.quantile(points, q))
    assert h.mean() == approx(np.mean(points))
    assert h.var() == approx(np.var(points))
    assert h.min() == min(points)
    assert h.max() == max(points)
    assert h.count() == max_bins
Example #6
0
def test_histogram_approx(max_bins, num_points, expected_error):
    """Test accuracy of StreamHist over capacity, especially quantiles."""
    points = [random.expovariate(1 / 5) for _ in range(num_points)]
    h = StreamHist(max_bins)
    h.update(points)

    import numpy as np
    q = [i / 100 for i in range(101)]
    err_sum = 0  # avg percent error across samples
    for p, b, b_np, b_np_min, b_np_max in zip(
            q, h.quantiles(*q), np.quantile(points, q),
            np.quantile(points, [0] * 7 + q),
            np.quantile(points, q[7:] + [1] * 7)):
        err_denom = b_np_max - b_np_min
        err_sum += abs(b - b_np) / err_denom
    assert err_sum <= expected_error
    assert h.mean() == approx(np.mean(points))
    assert h.var() == approx(np.var(points), rel=.05)
    assert h.min() == min(points)
    assert h.max() == max(points)
    assert h.count() == num_points