def main(): potential = AxisymmetricLogPotential(units=usys, s=1/0.9, a=0.5*(u.kpc/u.Myr)**2, b=0.*u.kpc) x0 = np.array([10.0, 0.0, 2.]) # kpc v0 = (np.array([0., 220., 20.])*u.km/u.s)\ .to(u.kpc/u.Myr).value # kpc/Myr integrator = LeapfrogIntegrator(potential._acceleration_at, x0.T, v0.T) ts, xs, vs = integrator.run(dt=0.1, Nsteps=10000) fig,axes = plt.subplots(2,2,sharex=True,sharey=True,figsize=(10,10)) axes[0,0].plot(xs[:,0,0], xs[:,0,1]) axes[0,0].set_xlim(-12,12) axes[0,0].set_ylim(-12,12) axes[1,0].plot(xs[:,0,0], xs[:,0,2]) axes[1,1].plot(xs[:,0,1], xs[:,0,2]) axes[0,1].set_visible(False) fig.subplots_adjust(hspace=0.05, wspace=0.05) plt.show()
s_hel = satellite._X.copy() p_gc = _hel_to_gc(p_hel) s_gc = _hel_to_gc(s_hel) gc = np.vstack((s_gc,p_gc)).copy() acc = np.zeros_like(gc[:,:3]) times = [] for ii in range(10): a = time.time() integrator = LeapfrogIntegrator(potential._acceleration_at, np.array(gc[:,:3]), np.array(gc[:,3:]), args=(gc.shape[0], acc)) t, rs, vs = integrator.run(t1=6200, t2=0, dt=-1) times.append(time.time()-a) print(np.min(times), "seconds per integration") times = [] for ii in range(10): a = time.time() back_integration_likelihood(6200, 0, -1, potential, p_gc, s_gc, 2.5e8, 0.01, particles.tub, 1.5, np.array([-1]*nparticles)) times.append(time.time()-a) print(np.min(times), "seconds per likelihood call") _config = """
def q_p(**kwargs): filename = os.path.join(plot_path, "q_p.pdf") fig,axes = plt.subplots(2,4,figsize=(14,7.5), sharex=True, sharey=True) bins = np.linspace(0.,10,40) nparticles = 5000 for kk,_m in enumerate(range(6,9+1)): mass = "2.5e{}".format(_m) m = float(mass) print(mass) sgr = SgrSimulation(sgr_path.format(_m), snapfile) p = sgr.particles(n=nparticles, expr="(tub!=0)")#" & (tub<400)") tub = p.tub s = sgr.satellite() potential = LawMajewski2010() X = np.vstack((s._X[...,:3], p._X[...,:3].copy())) V = np.vstack((s._X[...,3:], p._X[...,3:].copy())) integrator = LeapfrogIntegrator(potential._acceleration_at, np.array(X), np.array(V), args=(X.shape[0], np.zeros_like(X))) ts, rs, vs = integrator.run(t1=sgr.t1, t2=sgr.t2, dt=-1.) s_orbit = np.vstack((rs[:,0][:,np.newaxis].T, vs[:,0][:,np.newaxis].T)).T p_orbits = np.vstack((rs[:,1:].T, vs[:,1:].T)).T t_idx = np.array([np.argmin(np.fabs(ts - t)) for t in p.tub]) p_x = np.array([p_orbits[jj,ii] for ii,jj in enumerate(t_idx)]) s_x = np.array([s_orbit[jj,0] for jj in t_idx]) ############################################# # determine tail_bit diff = p_x-s_x norm_r = s_x[:,:3] / np.sqrt(np.sum(s_x[:,:3]**2, axis=-1))[:,np.newaxis] norm_diff_r = diff[:,:3] / np.sqrt(np.sum(diff[:,:3]**2, axis=-1))[:,np.newaxis] dot_prod_r = np.sum(norm_diff_r*norm_r, axis=-1) tail_bit = (dot_prod_r > 0.).astype(int)*2 - 1 ############################################# r_tide = potential._tidal_radius(m, s_orbit[...,:3])#*0.69336 s_R_orbit = np.sqrt(np.sum(s_orbit[...,:3]**2, axis=-1)) a_pm = (s_R_orbit + r_tide*tail_bit) / s_R_orbit q = np.sqrt(np.sum((p_x[:,:3] - s_x[:,:3])**2,axis=-1)) f = r_tide / s_R_orbit s_V = np.sqrt(np.sum(s_orbit[...,3:]**2, axis=-1)) vdisp = s_V * f / 1.4 p = np.sqrt(np.sum((p_x[:,3:] - s_x[...,3:])**2,axis=-1)) fig,axes = plt.subplots(2,1,figsize=(10,6),sharex=True) axes[0].plot(tub, q, marker='.', alpha=0.5, color='#666666') axes[0].plot(ts, r_tide*1.4, linewidth=2., alpha=0.8, color='k', linestyle='-', marker=None) axes[0].set_ylim(0., max(r_tide)*4) axes[1].plot(tub, (p*u.kpc/u.Myr).to(u.km/u.s).value, marker='.', alpha=0.5, color='#666666') axes[1].plot(ts, (vdisp*u.kpc/u.Myr).to(u.km/u.s).value, color='k', linewidth=2., alpha=0.75, linestyle='-', marker=None) M_enc = potential._enclosed_mass(s_R_orbit) #delta_E = 4/3.*G.decompose(usys).value**2*m*(M_enc / s_V)**2*r_tide**2/s_R_orbit**4 delta_v2 = 4/3.*G.decompose(usys).value**2*(M_enc / s_V)**2*\ np.mean(r_tide**2)/s_R_orbit**4 delta_v = (np.sqrt(2*delta_v2)*u.kpc/u.Myr).to(u.km/u.s).value axes[1].plot(ts, delta_v, linewidth=2., color='#2166AC', alpha=0.75, linestyle='--', marker=None) axes[1].set_ylim(0., max((vdisp*u.kpc/u.Myr).to(u.km/u.s).value)*4) axes[0].set_xlim(min(ts), max(ts)) fig.savefig(os.path.join(plot_path, "q_p_{}.png".format(mass)), transparent=True)
p_gc = _hel_to_gc(p_hel) s_gc = _hel_to_gc(s_hel) gc = np.vstack((s_gc, p_gc)).copy() acc = np.zeros_like(gc[:, :3]) times = [] for ii in range(10): a = time.time() integrator = LeapfrogIntegrator(potential._acceleration_at, np.array(gc[:, :3]), np.array(gc[:, 3:]), args=(gc.shape[0], acc)) t, rs, vs = integrator.run(t1=6200, t2=0, dt=-1) times.append(time.time() - a) print(np.min(times), "seconds per integration") times = [] for ii in range(10): a = time.time() back_integration_likelihood(6200, 0, -1, potential, p_gc, s_gc, 2.5e8, 0.01, particles.tub, 1.5, np.array([-1] * nparticles)) times.append(time.time() - a) print(np.min(times), "seconds per likelihood call") _config = """
def total_rv(): filenamer = os.path.join(plot_path, "rel_r.png") filenamev = os.path.join(plot_path, "rel_v.png") figr,axesr = plt.subplots(4,1,figsize=(10,14), sharex=True) figv,axesv = plt.subplots(4,1,figsize=(10,14), sharex=True) nparticles = 2000 for k,_m in enumerate(range(6,9+1)): mass = "2.5e{}".format(_m) m = float(mass) print(mass) sgr = SgrSimulation(sgr_path.format(_m),snapfile) p = sgr.particles(n=nparticles, expr=expr) s = sgr.satellite() X = np.vstack((s._X[...,:3], p._X[...,:3].copy())) V = np.vstack((s._X[...,3:], p._X[...,3:].copy())) integrator = LeapfrogIntegrator(sgr.potential._acceleration_at, np.array(X), np.array(V), args=(X.shape[0], np.zeros_like(X))) ts, rs, vs = integrator.run(t1=sgr.t1, t2=sgr.t2, dt=-1.) s_orbit = np.vstack((rs[:,0][:,np.newaxis].T, vs[:,0][:,np.newaxis].T)).T p_orbits = np.vstack((rs[:,1:].T, vs[:,1:].T)).T t_idx = np.array([np.argmin(np.fabs(ts - t)) for t in p.tub]) m_t = (-s.mdot*ts + s.m0)[:,np.newaxis] s_R = np.sqrt(np.sum(s_orbit[...,:3]**2, axis=-1)) s_V = np.sqrt(np.sum(s_orbit[...,3:]**2, axis=-1)) r_tide = sgr.potential._tidal_radius(m_t, s_orbit[...,:3]) v_disp = s_V * r_tide / s_R # cartesian basis to project into x_hat = s_orbit[...,:3] / np.sqrt(np.sum(s_orbit[...,:3]**2, axis=-1))[...,np.newaxis] _y_hat = s_orbit[...,3:] / np.sqrt(np.sum(s_orbit[...,3:]**2, axis=-1))[...,np.newaxis] z_hat = np.cross(x_hat, _y_hat) y_hat = -np.cross(x_hat, z_hat) # translate to satellite position rel_orbits = p_orbits - s_orbit rel_pos = rel_orbits[...,:3] rel_vel = rel_orbits[...,3:] # project onto each X = np.sum(rel_pos * x_hat, axis=-1) Y = np.sum(rel_pos * y_hat, axis=-1) Z = np.sum(rel_pos * z_hat, axis=-1) RR = np.sqrt(X**2 + Y**2 + Z**2) VX = np.sum(rel_vel * x_hat, axis=-1) VY = np.sum(rel_vel * y_hat, axis=-1) VZ = np.sum(rel_vel * z_hat, axis=-1) VV = (np.sqrt(VX**2 + VY**2 + VZ**2)*u.kpc/u.Myr).to(u.km/u.s).value v_disp = (v_disp*u.kpc/u.Myr).to(u.km/u.s).value _tcross = r_tide / np.sqrt(G.decompose(usys).value*m/r_tide) for ii,jj in enumerate(t_idx): #tcross = r_tide[jj,0] / _v[jj,ii] tcross = _tcross[jj] bnd = int(tcross / 2) ix1,ix2 = jj-bnd, jj+bnd if ix1 < 0: ix1 = 0 if ix2 > max(sgr.t1,sgr.t2): ix2 = -1 axesr[k].plot(ts[ix1:ix2], RR[ix1:ix2,ii], linestyle='-', alpha=0.1, marker=None, color='#555555', zorder=-1) axesv[k].plot(ts[ix1:ix2], VV[ix1:ix2,ii], linestyle='-', alpha=0.1, marker=None, color='#555555', zorder=-1) axesr[k].plot(ts, r_tide*2., marker=None) axesr[k].set_xlim(ts.min(), ts.max()) axesv[k].set_xlim(ts.min(), ts.max()) axesr[k].set_ylim(0,max(r_tide)*7) axesv[k].set_ylim(0,max(v_disp)*7) # axes[1,k].set_xlabel(r"$x_1$") # if k == 0: # axes[0,k].set_ylabel(r"$x_2$") # axes[1,k].set_ylabel(r"$x_3$") axesr[k].text(3000, max(r_tide)*5, r"$2.5\times10^{}M_\odot$".format(_m)) axesv[k].text(3000, max(v_disp)*5, r"$2.5\times10^{}M_\odot$".format(_m)) axesr[-1].set_xlabel("time [Myr]") axesv[-1].set_xlabel("time [Myr]") figr.suptitle("Relative distance", fontsize=26) figr.tight_layout() figr.subplots_adjust(top=0.92, hspace=0.025, wspace=0.1) figr.savefig(filenamer) figv.suptitle("Relative velocity", fontsize=26) figv.tight_layout() figv.subplots_adjust(top=0.92, hspace=0.025, wspace=0.1) figv.savefig(filenamev)
# satellite = simulation.satellite()\ # .to_frame(heliocentric) # s_hel = satellite._X.copy() # s_gc = _hel_to_gc(s_hel) s_gc = np.array([[8.363919011, 0.243352771, 16.864546659, -0.04468993, -0.12392801, -0.01664498]]) # Pal5 s_hel = _gc_to_hel(s_gc) # First integrate the orbit of the satellite back to get initial conditions acc = np.zeros_like(s_gc[:,:3]) integrator = LeapfrogIntegrator(potential._acceleration_at, np.array(s_gc[:,:3]), np.array(s_gc[:,3:]), args=(s_gc.shape[0], acc)) t, rs, vs = integrator.run(t1=T, t2=0, dt=-dt) init_r,init_v = rs[-1], vs[-1] # integrate the orbit of the satellite acc = np.zeros_like(s_gc[:,:3]) integrator = LeapfrogIntegrator(potential._acceleration_at, init_r, init_v, args=(1, acc)) t, rs, vs = integrator.run(t1=0, t2=T, dt=dt) satellite_orbit = np.vstack((rs.T,vs.T)).T # sample unbinding times uniformly s_R_orbit = np.sqrt(np.sum(satellite_orbit[...,:3]**2, axis=-1)) pericenters, = argrelmin(np.squeeze(s_R_orbit))
def fig3(**kwargs): """ Plot the PSD for 10 stars vs. back-integration time. """ seed = int(kwargs.get("seed", 999)) nPlot= 10 nIntegrate = 1000 dt = -1. # Read in the LM10 data np.random.seed(seed) lm10 = io.LM10Simulation() particles = lm10.particles(N=nIntegrate, expr="(Pcol>-1) & (abs(Lmflag)==1) & (Pcol < 8)") satellite = lm10.satellite() # array of starting 6d positions gc = np.vstack((satellite._X,particles._X)).copy() acc = np.zeros_like(gc[:,:3]) true_potential = LawMajewski2010() true_params = dict([(k,v.truth) for k,v in true_potential.parameters.items()]) wrong_params = true_params.copy() wrong_params['v_halo'] = 1.25*wrong_params['v_halo'] wrong_potential = LawMajewski2010(**wrong_params) sat_R = list() D_pses = list() ts = list() for potential in [true_potential, wrong_potential]: integrator = LeapfrogIntegrator(potential._acceleration_at, np.array(gc[:,:3]), np.array(gc[:,3:]), args=(gc.shape[0], acc)) times, rs, vs = integrator.run(t1=lm10.t1, t2=lm10.t2, dt=dt) s_orbit = np.vstack((rs[:,0][:,np.newaxis].T, vs[:,0][:,np.newaxis].T)).T p_orbits = np.vstack((rs[:,1:].T, vs[:,1:].T)).T sat_var = np.zeros((len(times),6)) sat_var[:,:3] = potential._tidal_radius(2.5e8, s_orbit[...,:3])*1.26 sat_var[:,3:] += 0.02179966 cov = (sat_var**2)[:,np.newaxis] D_ps = np.sqrt(np.sum((p_orbits - s_orbit)**2 / cov, axis=-1)) D_pses.append(D_ps) sat_R.append(np.sqrt(np.sum(s_orbit[:,0,:3]**2, axis=-1))) ts.append(times) rcparams = {'xtick.major.size' : 16, 'xtick.major.width' : 1.5} with rc_context(rc=rcparams): fig = plt.figure(figsize=(12.5,7)) gs = GridSpec(2,4) axes = [plt.subplot(gs[0,:3]), plt.subplot(gs[1,:3]), plt.subplot(gs[0,3]), plt.subplot(gs[1,3])] axes[0].axhline(1.4, linestyle='--', color='#444444', linewidth=2.) axes[1].axhline(1.4, linestyle='--', color='#444444', linewidth=2.) for ii in range(nPlot): for jj in range(2): d = D_pses[jj][:,ii] sR = sat_R[jj] axes[jj].semilogy(ts[jj]/1000, d, alpha=0.4, color=sgr_color, linewidth=2.) axes[jj].semilogy(ts[jj][np.argmin(d)]/1000, np.min(d), marker='|', markeredgewidth=4, markeredgecolor='k', color='k', alpha=0.9, markersize=25) axes[0].set_ylim(0.6,20) axes[0].set_xlim(-6.1, 0.) axes[1].set_ylim(axes[0].get_ylim()) axes[1].set_xlim(axes[0].get_xlim()) axes[0].tick_params(axis='y', which='both', length=0., labelleft='off') axes[1].tick_params(axis='y', which='both', length=0., labelleft='off') # vertical histograms of D_ps values ylim = axes[0].get_ylim() bins = np.logspace(np.log10(ylim[0]), np.log10(ylim[1]), 50) n,xx,patches = axes[2].hist(np.min(D_pses[0], axis=0), bins=bins, orientation='horizontal', histtype='step', linewidth=2., fill=True, facecolor='w', edgecolor='k') n,xx,patches = axes[3].hist(np.min(D_pses[1], axis=0), bins=bins, orientation='horizontal', histtype='step', linewidth=2., fill=True, facecolor='w', edgecolor='k') axes[2].set_yscale('log') axes[3].set_yscale('log') axes[2].axis('off') axes[3].axis('off') axes[2].set_ylim(axes[0].get_ylim()) axes[3].set_ylim(axes[1].get_ylim()) axes[3].set_ylim(top=axes[1].get_ylim()[1]*1.02) axes[2].set_xlim(right=1.05*axes[2].get_xlim()[1]) axes[3].set_xlim(right=1.05*axes[3].get_xlim()[1]) axes[1].xaxis.tick_bottom() axes[1].set_xticklabels([]) axes[0].xaxis.set_visible(False) fig.subplots_adjust(hspace=0.02, wspace=0., top=0.98, bottom=0.02, left=0.02, right=0.98) fig.savefig(os.path.join(plot_path, "fig3.pdf"))
def q_p(**kwargs): filename = os.path.join(plot_path, "q_p.pdf") fig, axes = plt.subplots(2, 4, figsize=(14, 7.5), sharex=True, sharey=True) bins = np.linspace(0., 10, 40) nparticles = 5000 for kk, _m in enumerate(range(6, 9 + 1)): mass = "2.5e{}".format(_m) m = float(mass) print(mass) sgr = SgrSimulation(sgr_path.format(_m), snapfile) p = sgr.particles(n=nparticles, expr="(tub!=0)") #" & (tub<400)") tub = p.tub s = sgr.satellite() potential = LawMajewski2010() X = np.vstack((s._X[..., :3], p._X[..., :3].copy())) V = np.vstack((s._X[..., 3:], p._X[..., 3:].copy())) integrator = LeapfrogIntegrator(potential._acceleration_at, np.array(X), np.array(V), args=(X.shape[0], np.zeros_like(X))) ts, rs, vs = integrator.run(t1=sgr.t1, t2=sgr.t2, dt=-1.) s_orbit = np.vstack( (rs[:, 0][:, np.newaxis].T, vs[:, 0][:, np.newaxis].T)).T p_orbits = np.vstack((rs[:, 1:].T, vs[:, 1:].T)).T t_idx = np.array([np.argmin(np.fabs(ts - t)) for t in p.tub]) p_x = np.array([p_orbits[jj, ii] for ii, jj in enumerate(t_idx)]) s_x = np.array([s_orbit[jj, 0] for jj in t_idx]) ############################################# # determine tail_bit diff = p_x - s_x norm_r = s_x[:, :3] / np.sqrt(np.sum(s_x[:, :3]**2, axis=-1))[:, np.newaxis] norm_diff_r = diff[:, :3] / np.sqrt(np.sum(diff[:, :3]**2, axis=-1))[:, np.newaxis] dot_prod_r = np.sum(norm_diff_r * norm_r, axis=-1) tail_bit = (dot_prod_r > 0.).astype(int) * 2 - 1 ############################################# r_tide = potential._tidal_radius(m, s_orbit[..., :3]) #*0.69336 s_R_orbit = np.sqrt(np.sum(s_orbit[..., :3]**2, axis=-1)) a_pm = (s_R_orbit + r_tide * tail_bit) / s_R_orbit q = np.sqrt(np.sum((p_x[:, :3] - s_x[:, :3])**2, axis=-1)) f = r_tide / s_R_orbit s_V = np.sqrt(np.sum(s_orbit[..., 3:]**2, axis=-1)) vdisp = s_V * f / 1.4 p = np.sqrt(np.sum((p_x[:, 3:] - s_x[..., 3:])**2, axis=-1)) fig, axes = plt.subplots(2, 1, figsize=(10, 6), sharex=True) axes[0].plot(tub, q, marker='.', alpha=0.5, color='#666666') axes[0].plot(ts, r_tide * 1.4, linewidth=2., alpha=0.8, color='k', linestyle='-', marker=None) axes[0].set_ylim(0., max(r_tide) * 4) axes[1].plot(tub, (p * u.kpc / u.Myr).to(u.km / u.s).value, marker='.', alpha=0.5, color='#666666') axes[1].plot(ts, (vdisp * u.kpc / u.Myr).to(u.km / u.s).value, color='k', linewidth=2., alpha=0.75, linestyle='-', marker=None) M_enc = potential._enclosed_mass(s_R_orbit) #delta_E = 4/3.*G.decompose(usys).value**2*m*(M_enc / s_V)**2*r_tide**2/s_R_orbit**4 delta_v2 = 4/3.*G.decompose(usys).value**2*(M_enc / s_V)**2*\ np.mean(r_tide**2)/s_R_orbit**4 delta_v = (np.sqrt(2 * delta_v2) * u.kpc / u.Myr).to(u.km / u.s).value axes[1].plot(ts, delta_v, linewidth=2., color='#2166AC', alpha=0.75, linestyle='--', marker=None) axes[1].set_ylim(0., max((vdisp * u.kpc / u.Myr).to(u.km / u.s).value) * 4) axes[0].set_xlim(min(ts), max(ts)) fig.savefig(os.path.join(plot_path, "q_p_{}.png".format(mass)), transparent=True)
# s_hel = satellite._X.copy() # s_gc = _hel_to_gc(s_hel) s_gc = np.array([[ 8.363919011, 0.243352771, 16.864546659, -0.04468993, -0.12392801, -0.01664498 ]]) # Pal5 s_hel = _gc_to_hel(s_gc) # First integrate the orbit of the satellite back to get initial conditions acc = np.zeros_like(s_gc[:, :3]) integrator = LeapfrogIntegrator(potential._acceleration_at, np.array(s_gc[:, :3]), np.array(s_gc[:, 3:]), args=(s_gc.shape[0], acc)) t, rs, vs = integrator.run(t1=T, t2=0, dt=-dt) init_r, init_v = rs[-1], vs[-1] # integrate the orbit of the satellite acc = np.zeros_like(s_gc[:, :3]) integrator = LeapfrogIntegrator(potential._acceleration_at, init_r, init_v, args=(1, acc)) t, rs, vs = integrator.run(t1=0, t2=T, dt=dt) satellite_orbit = np.vstack((rs.T, vs.T)).T # sample unbinding times uniformly s_R_orbit = np.sqrt(np.sum(satellite_orbit[..., :3]**2, axis=-1))