Example #1
0
 def get_classes(self):
     try:
         label_map_string = ''
         print("getting " + self.label_file + ' from ' + self.bucket)
         obj = self.s3.get_object(Bucket=self.bucket, Key=self.label_file)
         label_map_string = obj['Body'].read().decode('utf-8')
         print("got " + self.label_file)
         self.label_map = {}
         self.label_map = labelmap.StringIntLabelMap()
         self.labelmap_dict = {}
         text_format.Merge(label_map_string, self.label_map)
         self.categories = []
         for item in self.label_map.item:
             self.labelmap_dict[item.id] = item.name
             self.categories.append({'id': item.id, 'name': item.name})
         self.category_index = label_map_util.create_category_index(
             self.categories)
     except botocore.exceptions.ClientError as e:
         if e.response['Error']['Code'] == "NoSuchKey":
             self.labelmap_dict = {}
             print(self.label_file + ' was not found')
         else:
             print(e)
             raise ValueError('Error getting ' + self.label_file + ' in ' +
                              self.bucket)
def _save_label_map_dict(label_map_dict, label_map_path):
    label_map = string_int_label_map_pb2.StringIntLabelMap()
    items = sorted(label_map_dict.items(), key=lambda x: int(x[1]))
    for name, id_ in items:
        item = label_map.item.add()
        item.id = id_
        item.name = name
    _save_label_map(label_map, label_map_path)
Example #3
0
def load_labelmap(path):
    with open(path, "r") as labels_file:
        label_map_string = labels_file.read()
        label_map = string_int_label_map_pb2.StringIntLabelMap()
        try:
            text_format.Merge(label_map_string, label_map)
        except text_format.ParseError:
            label_map.ParseFromString(label_map_string)
    return label_map
Example #4
0
def load_labelmap(path):
  with tf.gfile.GFile(path, 'r') as fid:
    label_map_string = fid.read()
    label_map = string_int_label_map_pb2.StringIntLabelMap()
    try:
      text_format.Merge(label_map_string, label_map)
    except text_format.ParseError:
      label_map.ParseFromString(label_map_string)
  _validate_label_map(label_map)
  return label_map
def main(_):
  s = open('mscoco_complete_label_map.pbtxt', 'r').read()
  mymap = labelmap.StringIntLabelMap()
  global _label_map 
  _label_map = text_format.Parse(s, mymap)

  channel = grpc.insecure_channel(FLAGS.server)
  stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

  run_num = 20

  image, org = decode_image_opencv(FLAGS.image)
  image = image.astype(np.uint8)

  request_array = []
  # batch_size_array = [1, 1, 4, 4, 1, 4]
  batch_size_array = [1, 2, 4, 8, 16, 32, 64, 128]
  # batch_size_array = [32, 16, 8, 4, 2, 1]
  # batch_size_array = [10, 9, 8, 7, 6, 5]

  for batch_size in batch_size_array:
    inputs = image
    for i in range(batch_size - 1):
      inputs = np.append(inputs, image, axis = 0)

    request = predict_pb2.PredictRequest()    
    request.model_spec.name = model_name
    request.model_spec.signature_name = 'serving_default'
    request.inputs['inputs'].CopyFrom(tf.contrib.util.make_tensor_proto(inputs, shape=inputs.shape))

    request_array.append(request)

  print("Done with input preparation")
  raw_input("Press Enter to continue...\n")

  for i in range(len(batch_size_array)):
    batch_size = batch_size_array[i]
    request = request_array[i]

    durationSum = 0.0

    for j in range(run_num):
      start = time.time()
      result = stub.Predict(request, 10.0)
      end = time.time()
      duration = end - start
      print("duration = %f" % duration)
      if (j != 0):
        durationSum += duration

    print("average duration (warm-up excluded) for batch size of %d = %f" % (batch_size, durationSum / (run_num - 1)))
def main(_):
  s = open('mscoco_complete_label_map.pbtxt', 'r').read()
  mymap = labelmap.StringIntLabelMap()
  global _label_map 
  _label_map = text_format.Parse(s, mymap)

  channel = grpc.insecure_channel(FLAGS.server)
  stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

  # durationSum = 0.0
  thread_num = 1
  run_num = 100
  batch_size = 1

  image, org = decode_image_opencv(FLAGS.image)
  image = image.astype(np.uint8)
  inputs = image
  for i in range(batch_size - 1):
    inputs = np.append(inputs, image, axis = 0)

  # request = predict_pb2.PredictRequest()    
  # request.model_spec.name = model_name
  # request.model_spec.signature_name = 'serving_default'
  # request.inputs['inputs'].CopyFrom(tf.contrib.util.make_tensor_proto(inputs, shape=inputs.shape))

  # # warmup
  # warmup_num = 3
  # for i in range(warmup_num):

  #   start = time.time()
  #   result = stub.Predict(request, 10.0)
  #   end = time.time()
  #   duration = end - start
  #   print("warmup duration = %f" % duration)
  # # time.sleep(2.0)
  raw_input("Press Enter to continue...")

  start = time.time()

  jobs = []
  for i in range(thread_num):
    p = multiprocessing.Process(target = send_request, args = (inputs, run_num, batch_size, i,))
    jobs.append(p)
    p.start()

  for p in jobs:
    p.join()

  end = time.time()
  print("overall time = %f" % (end - start))
Example #7
0
def load_labelmap(path):
  """Loads label map proto.
  Args:
    path: path to StringIntLabelMap proto text file.
  Returns:
    a StringIntLabelMapProto
  """
  with tf.gfile.GFile(path, 'r') as fid:
    label_map_string = fid.read()
    label_map = string_int_label_map_pb2.StringIntLabelMap()
    try:
      text_format.Merge(label_map_string, label_map)
    except text_format.ParseError:
      label_map.ParseFromString(label_map_string)
  return label_map
Example #8
0
def main(_):
    if not FLAGS.img_path:
        print('Please specify img_path -img_path=...')
        return
    if not FLAGS.num_tests:
        print('Please specify num_tests -num_tests=n')
        return
    if not FLAGS.server:
        print('please specify server -server host:port')
        return
    print("Number of test=", FLAGS.num_tests)
    s = open('mscoco_complete_label_map.pbtxt', 'r').read()
    mymap = labelmap.StringIntLabelMap()
    global _label_map
    _label_map = text_format.Parse(s, mymap)

    do_inference(FLAGS.server, FLAGS.batch_size, FLAGS.num_tests,
                 FLAGS.img_path)
Example #9
0
def cats_to_pbtxt(cats_json, pbtxt):
    cats, _ = load_cats(cats_json)
    cats[0] = 'none_of_the_above'  #insert bg category

    import sys
    sys.path.append('/home/splendor/win/learn/models/object_detection/protos')

    import string_int_label_map_pb2

    labels = string_int_label_map_pb2.StringIntLabelMap()
    for k, v in cats.items():
        label = labels.item.add()
        label.id = k
        label.name = v


#     print(labels)
    with open(pbtxt, 'w') as f:
        f.write(str(labels))
def _load_label_map(label_map_path):
    """Loads label map proto.

      Args:
        label_map_path: path to StringIntLabelMap proto text file.
      Returns:
        a StringIntLabelMapProto
      """
    with tf.gfile.GFile(label_map_path, 'r') as fid:
        label_map_string = fid.read()
        label_map = string_int_label_map_pb2.StringIntLabelMap()
        try:
            text_format.Merge(label_map_string, label_map)
        except text_format.ParseError:
            label_map.ParseFromString(label_map_string)
    # validate label map
    for item in label_map.item:
        if item.id < 1:
            raise ValueError('Label map ids should be >= 1.')
    return label_map
Example #11
0
def main(_):
    label_map = labelmap.StringIntLabelMap()
    with open(FLAGS.label_file, 'r') as fid:
        label_map_string = fid.read()
        text_format.Merge(label_map_string, label_map)

    categories = []
    for item in label_map.item:
        labelmap_dict[item.name] = item.id
        categories.append({'id': item.id, 'name': item.name})
    print(categories)
    print(labelmap_dict)
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), FLAGS.image_dir)
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print('Successfully created the TFRecords: {}'.format(output_path))
def load_pbtxt_file(path):
    """Read .pbtxt file.

    Args:
        path: Path to StringIntLabelMap proto text file (.pbtxt file).

    Returns:
        A StringIntLabelMapProto.

    Raises:
        ValueError: If path is not exist.
    """
    if not tf.gfile.Exists(path):
        raise ValueError('`path` is not exist.')

    with tf.gfile.GFile(path, 'r') as fid:
        pbtxt_string = fid.read()
        pbtxt = string_int_label_map_pb2.StringIntLabelMap()
        try:
            text_format.Merge(pbtxt_string, pbtxt)
        except text_format.ParseError:
            pbtxt.ParseFromString(pbtxt_string)
    return pbtxt
Example #13
0
def main(_):
    s = open('mscoco_complete_label_map.pbtxt', 'r').read()
    mymap = labelmap.StringIntLabelMap()
    global _label_map
    _label_map = text_format.Parse(s, mymap)

    channel = grpc.insecure_channel(FLAGS.server)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

    image, org = decode_image_opencv(FLAGS.image)
    image = image.astype(np.uint8)

    model_1 = 'ssd_inception_v2_coco'
    model_2 = 'ssd_mobilenet'

    # thread_pool = []
    t1 = threading.Thread(target=send_request,
                          args=(
                              stub,
                              image,
                              model_1,
                              10,
                          ))
    t2 = threading.Thread(target=send_request,
                          args=(
                              stub,
                              image,
                              model_2,
                              1,
                          ))

    t1.start()
    t2.start()

    t1.join()
    t2.join()
 def Setup():
   s = open('%s/modules_traffic/mscoco_complete_label_map.pbtxt' % os.environ['TRAFFIC_JAMMER_PATH'], 'r').read()
   mymap = labelmap.StringIntLabelMap()
   TrafficInception._label_map = text_format.Parse(s, mymap)
Example #15
0
def main(_):
  if (sys.argv[1] == "mobilenet"):
    model_name = "ssd_mobilenet_v1_coco"
  elif (sys.argv[1] == "inception"):
    model_name = "ssd_inception_v2_coco"
  else:
    model_name = "ssd_resnet50_v1_fpn"

  s = open('/home/yitao/Documents/fun-project/tensorflow-related/traffic-jammer/single_dnn_client/obj_det/mscoco_complete_label_map.pbtxt','r').read()
  mymap =labelmap.StringIntLabelMap()
  global _label_map 
  _label_map = text_format.Parse(s,mymap)

  channel = grpc.insecure_channel(FLAGS.server)
  stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

  run_num = 10
  batch_size = 1
  for i in range(run_num):
    start = time.time()

    image, org = decode_image_opencv(FLAGS.image)
    _draw = org.copy()

    image = image.astype(np.uint8)
    inputs = image
    for i in range(batch_size - 1):
      inputs = np.append(inputs, image, axis = 0)

    request = predict_pb2.PredictRequest()    
    request.model_spec.name = model_name
    request.model_spec.signature_name = 'serving_default'
    request.inputs['inputs'].CopyFrom(tf.contrib.util.make_tensor_proto
           (inputs, shape=inputs.shape))

    result = stub.Predict(request, 10.0)
    # print(result)
    boxes = result.outputs['detection_boxes']
    scores = result.outputs['detection_scores']
    labels = result.outputs['detection_classes']
    num_detections= result.outputs['num_detections']

    # print("???")
    # print(boxes)

    boxes= tf.make_ndarray(boxes)
    scores= tf.make_ndarray(scores)
    labels= tf.make_ndarray(labels)
    num_detections= tf.make_ndarray(num_detections)

    # print("boxes output",(boxes).shape)
    # print("scores output",(scores).shape)
    # print("labels output",(labels).shape)
    # print('num_detections',num_detections[0])

    # # visualize detections hints from 
    # # # https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb

    # for box, score, label in zip(boxes[0], scores[0], labels[0]):
    #   # scores are sorted so we can break
    #   if score < 0.3:
    #       break
    #   #dim = image.shape[0:2]
    #   dim = _draw.shape
    #   #print("Label-raw",labels_to_names[label-1]," at ",box," Score ",score)
    #   box = box_normal_to_pixel(box, dim)
    #   b = box.astype(int)
    #   class_label = get_label(int(label))
    #   print("Label",class_label ," at ",b," Score ",score)
    #   # draw the image and write out
    #   cv2.rectangle(_draw,(b[0],b[1]),(b[2],b[3]),(0,0,255),1)
    #   cv2.putText(_draw,class_label + "-"+str(round(score,2)), (b[0]+2,b[1]+8),\
    #      cv2.FONT_HERSHEY_SIMPLEX, .45, (0,0,255))

    # cv2.imshow("test", _draw)
    # cv2.waitKey(0)

    end = time.time()
    duration = end - start
    print("duration = %s sec" % str(duration))
    def generate_elements(self, url):
        train_writer = tf.python_io.TFRecordWriter(dir_path + 'train.record')
        test_writer = tf.python_io.TFRecordWriter(dir_path + 'test.record')

        try:
            if os.path.isfile(labelmap_file) == True:
                label_file = util_obj.open_file(labelmap_file, "rb")
                class_map = string_int_label_map_pb2.StringIntLabelMap()
                class_map.ParseFromString(label_file.read())
                label_file.close()
            else:
                class_map = string_int_label_map_pb2.StringIntLabelMap()

            self.driver.get(url)
            
            #all_visible_elements = self.driver.find_elements_by_xpath("//*[not(contains(@style,'display:none'))]")
            all_visible_elements = self.driver.find_elements_by_xpath("//a[not(contains(@style,'display:none')) and not(contains(@class,'story'))] | //h2[not(contains(@style,'display:none')) and not(contains(@class,'story'))] | //button[not(contains(@style,'display:none')) and not(contains(@class,'story'))] | //span[not(contains(@style,'display:none')) and not(contains(@class,'story'))] | //input[not(contains(@style,'display:none')) and not(contains(@class,'story'))]")

            

            for element in all_visible_elements:
                elements_list = []
                location = element.location_once_scrolled_into_view
                location = element.location
                size = element.size
                x1_orig = location['x'] * 2
                y1_orig = location['y'] * 2
                x2_orig = x1_orig + size['width'] * 2
                y2_orig = y1_orig + size['height'] * 2
                words = element.text.split()
                if x2_orig != x1_orig and y2_orig != y1_orig and len(words) < 4:
                    
                    
                    png = self.driver.get_screenshot_as_png()
                    pil_image = Image.open(BytesIO(png))
                    image_width, image_height = pil_image.size
                    img, x1,y1,x2,y2 = self.crop_image(pil_image,x1_orig,y1_orig,x2_orig,y2_orig,1024,600)
                    #pil_image = pil_image.resize((1024,600))
                    img = np.asarray(img)
                    suffix = self.get_suffix_from_element(element)

                    #x1 = int((x1_orig/image_width)*1024)
                    #x2 = int((x2_orig/image_width)*1024)

                    #y1 = int((y1_orig/image_height)*600)
                    #y2 = int((y2_orig/image_height)*600)

                    if not suffix:
                        continue

                    class_name = element.tag_name + '_' + suffix
                    original_image_path = dir_path + "images/train/" + class_name + '.png'
                    #pil_image.save(original_image_path)
                    self.image_with_bounding_box(samples_dir,class_name,img,x1,y1,x2,y2)
                    

                    # writing class to label_map.pbtxt
                    class_id = util_obj.add_class_to_label_map(class_name, class_map)
                    print("class id", class_id)
                    
                    # creating an tf.example
                    #width = size['width'] * 2
                    #height = size['height'] * 2 

                    elements_list.append([img,x1,y1,x2,y2,image_width,image_height,class_name,class_id])
                    train_list,test_list = util_obj.create_augmented_images(elements_list,80)
                    self.serialize_image_list(train_writer,train_list)
                    self.serialize_image_list(test_writer,test_list)
        except Exception:
                #print(class_name)
                traceback.print_exc()

        
        label_map_file = util_obj.open_file(labelmap_file, "wb")
        label_map_file.write(class_map.SerializeToString())
        label_map_file.close()

        train_writer.close()
        test_writer.close()
Example #17
0
def main(_):
    s = open('mscoco_complete_label_map.pbtxt', 'r').read()
    mymap = labelmap.StringIntLabelMap()
    global _label_map
    _label_map = text_format.Parse(s, mymap)

    channel = grpc.insecure_channel(FLAGS.server)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

    thread_num_array = [1, 2, 4]
    batch_size_2d_array = [[1, 2, 4, 8, 16, 32, 64, 128],
                           [1, 2, 4, 8, 16, 32, 64], [1, 2, 4, 8, 16, 32]]

    # thread_num_array = [1]
    # batch_size_2d_array = [[4, 8]]

    for i in range(len(thread_num_array)):
        thread_num = thread_num_array[i]
        batch_size_array = batch_size_2d_array[i]
        for batch_size in batch_size_array:

            time.sleep(2.0)

            run_num = 1024 / (thread_num * batch_size)

            # print("[INFO] thread_num = %d, batch_size = %d, run_num = %d" % (thread_num, batch_size, run_num))

            t0 = time.time()
            inputs = prepareInputs(batch_size)
            t1 = time.time()
            # print("[Debug] it took %.3f sec to prepare image of shape %s" % (t1 - t0, inputs.shape))

            # warmup
            warmup_num = 3
            send_request(stub, inputs, batch_size, warmup_num, 0)

            # raw_input("Press Enter to continue...")
            time.sleep(2.0)

            t0 = time.time()

            thread_pool = []
            for thread_id in range(thread_num):
                t = threading.Thread(target=send_request,
                                     args=(
                                         stub,
                                         inputs,
                                         batch_size,
                                         run_num,
                                         thread_id,
                                     ))
                thread_pool.append(t)
                t.start()

            for t in thread_pool:
                t.join()

            t1 = time.time()
            print(
                "[Summary] thread_num = %d, batch_size = %d, run_num = %d, total duration = %.3f"
                % (thread_num, batch_size, run_num, t1 - t0))
Example #18
0
def main(_):
    s = open('mscoco_complete_label_map.pbtxt', 'r').read()
    mymap = labelmap.StringIntLabelMap()
    global _label_map
    _label_map = text_format.Parse(s, mymap)

    channel = grpc.insecure_channel(FLAGS.server)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

    # durationSum = 0.0
    thread_num = int(sys.argv[1])
    # run_num = 10
    batch_size = int(sys.argv[2])

    run_num = 1024 / (thread_num * batch_size)
    print("[INFO] thread_num = %d, batch_size = %d, run_num = %d" %
          (thread_num, batch_size, run_num))

    image, org = decode_image_opencv(FLAGS.image)
    image = image.astype(np.uint8)

    t0 = time.time()

    inputs = image
    for i in range(batch_size - 1):
        inputs = np.append(inputs, image, axis=0)

    t1 = time.time()
    print("\n[INFO] preparing input data takes %.3f sec\n" % (t1 - t0))

    request = predict_pb2.PredictRequest()
    request.model_spec.name = model_name
    request.model_spec.signature_name = 'serving_default'
    request.inputs['inputs'].CopyFrom(
        tf.contrib.util.make_tensor_proto(inputs, shape=inputs.shape))

    # warmup
    warmup_num = 3
    for i in range(warmup_num):

        start = time.time()
        result = stub.Predict(request, 10.0)
        end = time.time()
        duration = end - start
        print("warmup duration = %f" % duration)
    # time.sleep(2.0)
    raw_input("Press Enter to continue...")

    start = time.time()

    thread_pool = []
    for i in range(thread_num):
        t = threading.Thread(target=send_request,
                             args=(
                                 stub,
                                 inputs,
                                 run_num,
                                 batch_size,
                                 i,
                             ))
        thread_pool.append(t)
        t.start()

    for t in thread_pool:
        t.join()

    end = time.time()
    print("overall time = %f" % (end - start))
Example #19
0
def main(_):
    s = open('mscoco_complete_label_map.pbtxt', 'r').read()
    mymap = labelmap.StringIntLabelMap()
    global _label_map
    _label_map = text_format.Parse(s, mymap)

    channel = grpc.insecure_channel(FLAGS.server)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

    durationSum = 0.0
    run_num = 10
    batch_size = 64

    image, org = decode_image_opencv(FLAGS.image)
    # _draw = org.copy()

    image = image.astype(np.uint8)
    inputs = image
    for i in range(batch_size - 1):
        inputs = np.append(inputs, image, axis=0)

    request = predict_pb2.PredictRequest()
    request.model_spec.name = model_name
    request.model_spec.signature_name = 'serving_default'
    request.inputs['inputs'].CopyFrom(
        tf.contrib.util.make_tensor_proto(inputs, shape=inputs.shape))

    for i in range(run_num):

        start = time.time()
        result = stub.Predict(request, 10.0)
        end = time.time()

        if (i != 0):
            duration = end - start
            durationSum += duration
            print("duration = %f" % duration)
            # print(result)

        # boxes = result.outputs['detection_boxes']
        # scores = result.outputs['detection_scores']
        # labels = result.outputs['detection_classes']
        # num_detections= result.outputs['num_detections']

        # boxes= tf.make_ndarray(boxes)
        # scores= tf.make_ndarray(scores)
        # labels= tf.make_ndarray(labels)
        # num_detections= tf.make_ndarray(num_detections)

        # print("boxes output",(boxes).shape)
        # print("scores output",(scores).shape)
        # print("labels output",(labels).shape)
        # print('num_detections',num_detections[0])

        # # visualize detections hints from
        # # # https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb

        # for box, score, label in zip(boxes[0], scores[0], labels[0]):
        #   # scores are sorted so we can break
        #   if score < 0.3:
        #       break
        #   #dim = image.shape[0:2]
        #   dim = _draw.shape
        #   #print("Label-raw",labels_to_names[label-1]," at ",box," Score ",score)
        #   box = box_normal_to_pixel(box, dim)
        #   b = box.astype(int)
        #   class_label = get_label(int(label))
        #   print("Label",class_label ," at ",b," Score ",score)
        #   # draw the image and write out
        #   cv2.rectangle(_draw,(b[0],b[1]),(b[2],b[3]),(0,0,255),1)
        #   cv2.putText(_draw,class_label + "-"+str(round(score,2)), (b[0]+2,b[1]+8),\
        #      cv2.FONT_HERSHEY_SIMPLEX, .45, (0,0,255))

        # cv2.imshow("test", _draw)
        # cv2.waitKey(0)

    print("average duration for batch size of %d = %f" %
          (batch_size, durationSum / (run_num - 1)))