Example #1
0
def solve_single(env):
    use_viewer = (env.GetViewer() is not None)
    robot, occupancy = load_env(env)
    arm = robot.GetActiveManipulator()

    #get_problem = get_problem_1_0
    #get_problem = get_problem_1_1
    #get_problem = get_problem_1_2
    get_problem = get_problem_1_3
    #get_problem = get_problem_2_1
    #get_problem = get_problem_2_2
    #get_problem = get_problem_3_2
    #get_problem = get_problem_4

    object_meshes = get_object_meshes(MESHES_DIR)
    belief, task = get_problem(object_meshes)
    print SEPARATOR
    print 'Belief:', belief
    print 'Task:', task

    avaliable_actions = None
    #avaliable_actions = ['pick']
    stream_problem, belief_from_name = get_ground_problem(
        arm,
        object_meshes,
        belief,
        task,
        occupancy,
        available_actions=avaliable_actions)
    print stream_problem

    env.Lock()
    plan, universe = incremental_planner(stream_problem,
                                         search=get_fast_downward(
                                             'astar', verbose=False),
                                         optimal=False,
                                         frequency=1,
                                         waves=True,
                                         debug=False,
                                         max_time=5.0)
    env.Unlock()
    print SEPARATOR
    length = plan_length(universe, plan)
    cost = plan_cost(universe, plan)
    plan = convert_plan(plan)
    print 'Plan: {}\nLength: {} | Cost: {}'.format(plan, length, cost)

    if use_viewer and (plan is not None):
        trajectories = process_plan(arm, belief_from_name, plan)
        print trajectories
        raw_input('Start?')
        while True:
            with EnvironmentStateSaver(env):
                simulate_trajectories(env, trajectories)
                response = get_input('Replay?', ('y', 'n'))
            if response != 'y':
                break
        # simulate_single(arm, plan)
    if use_viewer:
        raw_input('Finish?')
def update_best_plan(universe, search, best_plan, best_cost, max_time):
    if max_time is None:
        return best_plan, best_cost
    t0 = time()
    plan = search(universe, max_time, best_cost)
    universe.search_time += time() - t0
    if plan is not None:
        cost = plan_cost(universe, plan)  # plan_cost | plan_length
        if cost < best_cost:
            best_plan, best_cost = plan, cost
            if universe.verbose:
                print best_cost, convert_plan(best_plan)
    return best_plan, best_cost
 def fn(belief):
   problem = observable_problem(belief, goal)
   #print problem
   # NOTE - the cost sensitivity starts to factor into this...
   # NOTE - max cost prevents extremely large cost actions
   search = get_fast_downward('astar', verbose=False, max_cost=max_cost) # dijkstra | astar | wastar1 | wastar2 | wastar3 | eager | lazy
   plan, universe = incremental_planner(problem, search=search, frequency=1)
   cost = plan_cost(universe, plan)
   plan = convert_plan(plan)
   print 'Plan:', plan
   print 'Cost:', cost
   print 'Length:', len(plan)
   if plan is None or not plan:
     return None
   action, params = plan[0]
   print 'Action:', action, params
   print
   return OPERATOR_MAP[action.name](operators, *params)
Example #4
0
 def policy(estimator):
     problem, command_from_action = compile_problem(estimator, task)
     print problem
     plan, universe = incremental_planner(
         problem,
         search=get_fast_downward('astar'),
         frequency=100,
         waves=False,
         optimal=True,
         debug=False
     )  # TODO: need to make sure I do all costs (they are always eager)
     print 'Plan: {}\nLength: {} | Cost: {}'.format(
         convert_plan(plan), plan_length(universe, plan),
         plan_cost(universe, plan))
     if plan is None:
         raise RuntimeError('Unable to find a plan')
     if not plan:
         return None
     return command_from_action(plan[0])
Example #5
0
def simple_focused(problem,
                   search=DEFAULT_SEARCH,
                   max_time=INF,
                   max_iterations=INF,
                   optimal=False,
                   stream_cost=10,
                   check_feasible=False,
                   max_level=0,
                   greedy=True,
                   shared=True,
                   dfs=True,
                   verbose=False,
                   debug=False):

    universe = Universe(
        problem,
        use_ground=False,
        make_stream_instances=True,
        make_action_instances=True)  # Need to assign a cost to all
    #universe = Universe(problem, use_ground=False, make_stream_instances=True, make_action_instances=not optimal)
    initialize_universe(universe)
    universe.action_to_function = get_stream_functions(
        universe) if stream_cost is not None else {}

    ####################

    for _ in irange(0, max_iterations):
        if verbose: print
        print_status(universe)
        if (time() - universe.start_time) >= max_time:
            break
        universe.iterations += 1
        if debug:
            focused_debug(universe)

        if check_feasible:  # Checks if the problem is feasible with no parameters
            plan = solve_real(universe, search, max_time)
            if plan is not None:
                assert is_real_solution(universe, plan)
                return plan, universe

        make_streams(universe,
                     max_level)  # TODO - can also do these in iterations/waves
        if debug:
            abstract_focused_debug(universe)

        ####################

        atom_nodes = determine_reachable(universe)
        for instance in universe.action_instances:  # TODO - do I need to reset this ever?
            if isinstance(instance, ActionInstance):
                add_stream_cost(
                    universe, atom_nodes, instance, stream_cost
                )  # NOTE - need to add these before the state resets
        plan, goals = solve_abstract(universe, atom_nodes, search, max_time)
        if verbose:
            print 'Cost:', plan_cost(universe, plan), 'Plan:', convert_plan(
                plan)  # TODO - use an upper bound and continue?
            raw_input('Continue?')
        if plan is None:
            if not universe.temp_blocked:
                break
            universe.temp_blocked = set()
            universe.resets += 1
            continue

        ####################

        constants = set_union(set(args) for _, args in plan)
        abstract_constants = filter(lambda c: isinstance(c, AbstractConstant),
                                    constants)
        new_goals = goals.copy()
        new_goals.update(
            map(Concrete, abstract_constants)
        )  # NOTE - could do this for all supporting goals without distinction
        order = extract_streams(atom_nodes, new_goals)

        #visualize_streams(goals, abstract_constants)
        if verbose:
            print 'Goals:', len(goals)
            print 'Abstract constants:', len(abstract_constants)
            print 'Order:', order

        ####################

        bound_plan = produce_bindings(universe, order, plan, greedy, shared,
                                      dfs)
        if verbose: print 'Bound plan:', bound_plan
        if bound_plan is not None:
            assert is_real_solution(universe, bound_plan)
            return bound_plan, universe
    return None, universe
Example #6
0
def simple_focused(problem,
                   search=DEFAULT_SEARCH,
                   max_time=INF,
                   max_iterations=INF,
                   optimal=False,
                   stream_cost=10,
                   check_feasible=False,
                   max_level=0,
                   greedy=True,
                   shared=True,
                   dfs=True,
                   verbose=False,
                   debug=False):

    universe = Universe(problem,
                        use_ground=False,
                        make_stream_instances=True,
                        make_action_instances=True)

    initialize_universe(universe)
    universe.action_to_function = get_stream_functions(
        universe) if stream_cost is not None else {}

    for _ in irange(0, max_iterations):
        if verbose:
            print
        print_status(universe)
        if time() - universe.start_time >= max_time:
            break
        universe.iterations += 1
        if debug:
            focused_debug(universe)

        if check_feasible:
            plan = solve_real(universe, search, max_time)
            if plan is not None:
                assert is_real_solution(universe, plan)
                return plan, universe

        make_streams(universe, max_level)
        if debug:
            abstract_focused_debug(universe)

        atom_nodes = determine_reachable(universe)
        for instance in universe.action_instances:
            if isinstance(instance, ActionInstance):
                add_stream_cost(universe, atom_nodes, instance, stream_cost)
        plan, goals = solve_abstract(universe, atom_nodes, search, max_time,
                                     stream_cost)
        if verbose:
            print 'Cost:', plan_cost(universe,
                                     plan), 'Plan:', convert_plan(plan)
            raw_input('Continue?')
        if plan is None:
            if not universe.temp_blocked:
                break
            universe.temp_blocked = set()
            universe.resets += 1
            continue

        constants = set_union(set(args) for _, args in plan)
        abstract_constants = filter(lambda c: isinstance(c, AbstractConstant),
                                    constants)
        new_goals = goals.copy()
        new_goals.update(map(Concrete, abstract_constants))
        order = extract_streams(atom_nodes, new_goals)

        if verbose:
            print 'Goals:', len(goals)
            print 'Abstract constants:', len(abstract_constants)
            print 'Order:', order

        bound_plan = produce_bindings(universe, order, plan, greedy, shared,
                                      dfs)
        if verbose:
            print 'Bound plan:', bound_plan
        if bound_plan is not None:
            assert is_real_solution(universe, bound_plan)
            return bound_plan, universe
    return None, universe
Example #7
0
def incremental_planner(problem,
                        search=DEFAULT_SEARCH,
                        max_time=INF,
                        max_iterations=INF,
                        max_calls=INF,
                        waves=True,
                        frequency=1,
                        optimal=False,
                        verbose=False,
                        debug=False):
    """
    Incremental algorithm.

    :param problem: :class:`.STRIPStreamProblem`
    :param search: python function of the search subroutine
    :param max_time: numeric maximum planning time
    :param max_iterations: int maximum subroutine calls
    :param waves: boolean flag when ``True`` considers each stream evaluation iteration to be the current queue rather than a single stream
    :param frequency: numeric number of evaluation iterations given by ``waves`` (``float('inf')`` implies to evaluate all streams per iteration)
    :param optimal: boolean flag which saves the best current solution
    :param verbose: boolean flag which toggles the print output
    :param debug: boolean flag which prints the objects on each iteration
    :return: a sequence of :class:`.Action` and tuple of :class:`.Constant` pairs as well as :class:`.Universe`
    """

    universe = Universe(problem, use_ground=False, verbose=verbose)

    queue = deque()
    add_streams(universe, queue)
    best_plan, best_cost = None, INF
    for _ in irange(0, max_iterations):
        print 'Iteration: %d | Time: %s | Calls: %s | Search Time: %s | Solved: %s | Cost: %s' % (
            universe.iterations, round(time() - universe.start_time,
                                       3), universe.calls,
            round(universe.search_time, 3), best_plan is not None, best_cost)
        if debug:
            for type in universe.type_to_objects:
                print type, len(universe.type_to_objects[type]), map(
                    get_value, universe.type_to_objects[type])[:10]
            raw_input('Continue?\n')
        universe.iterations += 1
        t0 = time()
        plan = search(universe, max_time - (time() - universe.start_time),
                      best_cost)
        universe.search_time += time() - t0
        if plan is not None:
            cost = plan_cost(universe, plan)
            if cost < best_cost:
                best_plan, best_cost = plan, cost
                if verbose:
                    print best_cost, convert_plan(best_plan)
            if not optimal:
                break
        if waves and not call_queue_wave(queue, universe, frequency, max_time,
                                         max_calls):
            break
        if not waves and not call_queue(queue, universe, frequency, max_time,
                                        max_calls):
            break
    if verbose:
        universe.print_statistics()
        if best_plan is not None:
            print_plan_stats(best_plan, universe)
            print 'Cost:', best_cost
            print 'Length:', len(best_plan)

    return best_plan, universe
Example #8
0
def focused_subroutine(universe,
                       search=DEFAULT_SEARCH,
                       max_time=INF,
                       max_iterations=INF,
                       stream_cost=10,
                       check_feasible=False,
                       greedy=True,
                       dfs=True,
                       verbose=False,
                       debug=False,
                       stream_limit=INF,
                       sort_order=True,
                       replace_initial=False,
                       optimal=False):
    assert not optimal or stream_cost is None or stream_cost == 0
    # TODO - should really add these in focused_planner
    for operator in universe.name_to_action.values() + universe.axioms:
        bound_parameters = set(p for a in operator.condition.get_atoms()
                               for p in a.args
                               if a.predicate in universe.stream_predicates
                               | set(universe.derived_predicates))
        operator.condition = And(
            operator.condition, *[
                Concrete(param) for param in operator.parameters
                if param not in bound_parameters
            ])
    # NOTE - objects are grounded. This is harmless but annoying

    stream_actions = [StreamAction(cs) for cs in universe.problem.cond_streams]
    for stream_action in stream_actions:
        for obj in stream_action.out_consts:
            universe.add_object(obj)
    plannable_streams = filter(lambda a: a.cond_stream.plannable,
                               stream_actions)

    #universe.cost_to_function = get_cost_functions(universe)
    universe.action_to_function = get_stream_functions(
        universe) if stream_cost is not None else {}
    solution = []
    for _ in irange(0, max_iterations):
        if verbose: print
        print_status(universe)
        if time() - universe.start_time >= max_time:
            break
        universe.iterations += 1
        if debug:
            for type in universe.type_to_objects:
                print type, len(universe.type_to_objects[type]), \
                  map(get_value, filter(lambda o: not isinstance(o, AbstractConstant), universe.type_to_objects[type]))[:10]
            raw_input('Continue?\n')

        if check_feasible:  # Checks if the problem is feasible with no parameters
            universe.temporary_atoms = set()
            t0 = time()
            plan = search(universe, max_time - (time() - universe.start_time),
                          INF)
            universe.search_time += time() - t0
            if plan is not None:
                #if verbose: print_solved(universe, plan)
                print_status(universe)
                return solution if replace_initial else plan, universe

        t0 = time()
        process_eager_streams(universe)
        if DYNAMIC_INSTANCES:
            l_costs, s_costs, static_atoms = dynamic_compute_costs(
                plannable_streams, universe)
        else:
            l_costs, s_costs, static_atoms = get_stream_instances(
                plannable_streams, universe)
        if verbose:
            print 'compute_costs | predicates: %s, streams: %s, time: %s' % (
                len(l_costs), len(s_costs), time() - t0)

        if stream_cost is not None and search != strips_planner:  # TODO - make this specific to FastDownward
            add_stream_costs(universe, l_costs, stream_cost)

        t0 = time()
        plan = search(universe, max_time - (time() - universe.start_time), INF)
        universe.search_time += time() - t0
        if verbose:
            print 'Cost:', plan_cost(universe, plan), 'Plan:', convert_plan(
                plan)  # TODO - use an upper bound and continue?
        if plan is None:
            if len(universe.temp_blocked) == 0:
                break
            universe.temp_blocked = set()
            universe.resets += 1
            continue

        plan_goals = get_target_atoms(universe, plan, static_atoms)
        goals = {goal for level in plan_goals for goal in level}
        if len(goals) != 0:
            relaxed_plan, achievers = extract_plan(goals, l_costs, s_costs)
            t0 = time()
            if dfs:
                groundings = dfs_groundings(plan_goals,
                                            relaxed_plan,
                                            achievers,
                                            sort_order,
                                            stream_limit,
                                            universe,
                                            greedy=greedy)
                #groundings = queue_bindings(plan_goals, relaxed_plan, achievers, sort_order, problem)
            else:
                groundings = single_groundings(plan_goals,
                                               relaxed_plan,
                                               achievers,
                                               sort_order,
                                               stream_limit,
                                               universe,
                                               greedy=greedy)
            if verbose: print 'groundings | time:', time() - t0
            #for cs in problem.cond_streams:
            #  print cs, cs.calls, cs.call_time
            #raw_input('Continue?')
        else:
            groundings = {}

        #print groundings
        #print universe.perm_blocked
        #print universe.temp_blocked
        #raw_input('awefawfe')
        if groundings is not None and (
                not optimal
                or len(goals) == 0):  # Prove optimal once have final costs
            plan = [(action, tuple(groundings.get(arg, arg) for arg in args))
                    for action, args in plan]

            if replace_initial:
                subplan, success = feasible_subplan(universe, plan)
                state = universe.initial_fluents()
                for action, args in subplan:
                    state = action.instantiate(args).apply(
                        state, universe.type_to_objects)
                fluent_atoms = filter(
                    lambda a: a.predicate in universe.fluent_predicates,
                    state)  # NOTE - might be unnecessary
                static_atoms = filter(
                    lambda a: a.predicate not in universe.fluent_predicates,
                    universe.initial_atoms)
                universe.initial_atoms = set(fluent_atoms) | set(static_atoms)
                solution += subplan

            if not is_solution(universe, plan):
                if verbose:
                    print plan
                    #raw_input('Failed plan')
                continue
            #if verbose: print_solved(universe, plan)
            print_status(universe)
            return solution if replace_initial else plan, universe
        #if verbose: raw_input('Continue?')
    #if verbose: universe.print_statistics()
    print_status(universe)
    return None, universe
def solve_sequence(env):
    # TODO: simulate the work for real
    use_viewer = (env.GetViewer() is not None)
    robot, occupancy = load_env(env)
    arm = robot.GetActiveManipulator()
    # Two environments doesn't work because at robot can only be in one

    get_world = get_world_1
    #get_world = get_world_2
    #get_world = get_world_3
    #get_world = get_world_4

    object_meshes = get_object_meshes(MESHES_DIR)
    world, task = get_world(object_meshes)

    prior = unknown(world)
    #prior = fully_observable(world)

    print SEPARATOR
    print world
    print task

    # TODO: could try using two display windows
    while True:
        print SEPARATOR
        add_world(robot, object_meshes, world)
        #env.UpdatePublishedBodies()
        saver = EnvironmentStateSaver(env)  # TODO: won't help if removed...
        #print observe_env(robot)

        belief = belief_from_task(
            prior, task)  # TODO: don't recreate this on each step...
        print belief

        #with env:
        env.Lock()
        stream_problem, belief_from_name = get_ground_problem(
            arm, object_meshes, belief, task, occupancy)
        print stream_problem
        # TODO: most of the overhead comes in translation still
        plan, universe = incremental_planner(stream_problem,
                                             search=get_fast_downward(
                                                 'ff-astar', verbose=False),
                                             optimal=True,
                                             frequency=1,
                                             waves=True,
                                             debug=False,
                                             max_time=5.0)
        env.Unlock()

        print SEPARATOR
        print 'Plan: {}\nLength: {} | Cost: {}'.format(
            convert_plan(plan), plan_length(universe, plan),
            plan_cost(universe, plan))
        if plan is None:
            raise RuntimeError('Unable to find a plan')
        if not plan:
            break
        plan_prefix = get_plan_prefix(convert_plan(plan))
        print plan_prefix
        trajectories = process_plan(arm, plan_prefix)
        print trajectories
        if use_viewer:
            raw_input('Execute?')
            saver.Restore()
            simulate_trajectories(env, trajectories)

        saver.Restore()
        action, args = plan_prefix[0]
        # TODO: update the belief entirely from the env
        world, prior = update_world(robot, world, prior, action, args)
        #world, prior = update_world(robot, world, belief, action, args)
    if use_viewer:
        raw_input('Finish?')