Example #1
0
def create_problem():
    """
    Creates a blocksworld STRIPStream problem.

    :return: a :class:`.STRIPStreamProblem`
    """

    # Data types
    BLOCK = Type()

    # Fluent predicates
    Clear = Pred(BLOCK)
    OnTable = Pred(BLOCK)
    ArmEmpty = Pred()
    Holding = Pred(BLOCK)
    On = Pred(BLOCK, BLOCK)

    # Free parameters
    B1, B2 = Param(BLOCK), Param(BLOCK)

    rename_easy(locals())

    actions = [
        Action(name='pickup', parameters=[B1],
               condition=And(Clear(B1), OnTable(B1), ArmEmpty()),
               effect=And(Holding(B1), Not(Clear(B1)), Not(OnTable(B1)), Not(ArmEmpty()))),

        Action(name='putdown', parameters=[B1],
               condition=Holding(B1),
               effect=And(Clear(B1), OnTable(B1), ArmEmpty(), Not(Holding(B1)))),

        Action(name='stack', parameters=[B1, B2],
               condition=And(Clear(B2), Holding(B1)),
               effect=And(Clear(B1), On(B1, B2), ArmEmpty(), Not(Clear(B2)), Not(Holding(B1)))),

        Action(name='unstack', parameters=[B1, B2],
               condition=And(Clear(B1), On(B1, B2), ArmEmpty()),
               effect=And(Clear(B2), Holding(B1), Not(Clear(B1)), Not(On(B1, B2)), Not(ArmEmpty()))),
    ]

    axioms = []
    cond_streams = []
    constants = []

    initial_atoms = [
        OnTable('A'),
        OnTable('B'),
        OnTable('C'),
        Clear('A'),
        Clear('B'),
        Clear('C'),
        ArmEmpty(),
    ]

    goal_literals = [On('A', 'B'), On('B', 'C')]

    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)
Example #2
0
def create_problem(time_step=.5, fuel_rate=5, start_fuel=10, goal_p=10):
    """
  Creates the Tsiolkovsky rocket problem.

  :return: a :class:`.STRIPStreamProblem`
  """

    # Data types
    STATE, RATE, MASS, TIME = Type(), Type(), Type(), Type()
    HEIGHT = Type()

    # Fluent predicates
    AtState = Pred(STATE)

    # Derived predicates
    Above = Pred(HEIGHT)

    # Static predicates
    IsBurst = Pred(STATE, RATE, TIME, STATE)
    IsAbove = Pred(STATE, HEIGHT)

    # Free parameters
    X1, X2 = Param(STATE), Param(STATE)
    Q, T = Param(RATE), Param(TIME)
    H = Param(HEIGHT)

    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        Action(name='burst',
               parameters=[X1, Q, T, X2],
               condition=And(AtState(X1), IsBurst(X1, Q, T, X2)),
               effect=And(AtState(X2), Not(AtState(X1)))),
    ]

    axioms = [
        Axiom(effect=Above(H),
              condition=Exists([X1], And(AtState(X1), IsAbove(X1, H)))),
    ]

    ####################

    # Conditional stream declarations
    cond_streams = [
        GeneratorStream(inputs=[X1, Q, T],
                        outputs=[X2],
                        conditions=[],
                        effects=[IsBurst(X1, Q, T, X2)],
                        generator=forward_burst),
        TestStream(inputs=[X1, H],
                   conditions=[],
                   effects=[IsAbove(X1, H)],
                   test=lambda (p, v, m), h: p >= h,
                   eager=True),
    ]
Example #3
0
 def __init__(self):
     obj, p, prior = Param(OBJ), Param(POSE), Param(BELIEF)
     post = 1
     super(PerfectLook, self).__init__(
         self.__class__.__name__,
         [obj, p, prior],
         And(
             #At(obj, p),
             BAt(obj, p, prior)),
         And(BAt(obj, p, 1), Not(BAt(obj, p, prior))))
Example #4
0
 def __init__(self, p_obs_t):
     obj, p, prior, post = Param(OBJ), Param(POSE), Param(BELIEF), Param(
         BELIEF)
     super(BackwardLook, self).__init__(
         self.__class__.__name__,
         [obj, p, prior, post],
         And(
             #At(obj, p),
             BAt(obj, p, prior),
             #BAtAbove(obj, p, prior), # Problem where we want to delete the old belief, but we need to include the reference belief
             IsPossible(prior, post)),
         And(BAt(obj, p, post), Not(BAt(obj, p, prior))))
Example #5
0
 def __init__(self, min_safe_p=.95):
     obj, p1, p2, b = Param(OBJ), Param(POSE), Param(POSE), Param(BELIEF)
     Action.__init__(
         self,
         self.__class__.__name__,
         [obj, p1, p2, b],
         And(
             #At(obj, p1),
             BAt(obj, p1, b),
             BAtAbove(obj, p1, min_safe_p)),
         And(
             #At(obj, p2),
             BAt(obj, p2, b),
             #Not(At(obj, p1)),
             Not(BAt(obj, p1, b))),
         cost=1)
Example #6
0
 def __init__(self, min_safe_p=.95):
     obj, d1, d2 = Param(OBJ), Param(DIST), Param(DIST)
     Action.__init__(
         self,
         self.__class__.__name__,
         [obj, d],
         And(
             BClean(obj, d1),
             IsClean(d1, d2),
             #BAtAbove(obj, p1, min_safe_p)
         ),
         And(
             BClean(obj, d2),
             #Not(At(obj, p1)),
             Not(BClean(obj, d1))),
         cost=1)
Example #7
0
    def __init__(self, p_obs_t, p_obs_f=None, log_cost=False):
        #self.p_obs_t = p_obs_t
        #if p_obs_f is None: self.p_obs_f = 1 - p_obs_t
        #self.log_cost = log_cost
        cost = prob_cost(
            p_obs_t, log_cost=log_cost)  # Conditions on successful observation
        cost = None

        obj, p, prior, post = Param(OBJ), Param(POSE), Param(BELIEF), Param(
            BELIEF)
        super(Look, self).__init__(
            self.__class__.__name__,
            [obj, p, prior, post],
            And(
                #At(obj, p),
                BAt(obj, p, prior),
                IsUpdate(prior, post)),
            And(BAt(obj, p, post), Not(BAt(obj, p, prior))),
            cost)
HoldingMotion = Pred(CONF, CONF, TRAJ)
GraspMotion = Pred(CYL, POINT, GRASP, CONF, TRAJ)
#GraspMotion = Pred(OBJ, POSE, GRASP, CONF, TRAJ, TRAJ)
PushMotion = Pred(CYL, POINT, POINT, CONF, TRAJ)

# Static collision
CFreePose = Pred(POINT, POINT)
CFreeTraj = Pred(TRAJ, POINT)

IsPushable = Pred(CYL)
IsPose = Pred(CYL, POINT)
IsGrasp = Pred(CYL, GRASP)
Stable = Pred(POINT, SURFACE)
IsEdge = Pred(POINT)

O, P, G = Param(CYL), Param(POINT), Param(GRASP)
O2, P2 = Param(CYL), Param(POINT)
Q, Q2 = Param(CONF), Param(CONF)
T = Param(TRAJ)
T2 = Param(TRAJ)
S = Param(SURFACE)

rename_easy(locals())

####################


def edge_generator_fn(bodies, surfaces):
    def pose_generator(obj, surface):
        surface_pose, convex_hull = surfaces[surface].get_surface()
        world_from_surface = trans_from_pose(surface_pose)
Example #9
0
def solve_incrementally():

    O = Param(OBJECT)
    O1, O2 = Param(OBJECT), Param(OBJECT)
    L = Param(LOCATION)
    L_s, L_g = Param(LOCATION), Param(LOCATION)  # generic location
    Stove_l_s, Stove_l_g = Param(STOVE_L_S), Param(
        STOVE_L_G)  # locations for stove and sink
    Sink_l_s, Sink_l_g = Param(SINK_L_S), Param(SINK_L_G)

    actions = [
        Action(name='wash',
               parameters=[O],
               condition=And(InSink(O)),
               effect=And(Clean(O))),
        Action(name='cook',
               parameters=[O],
               condition=And(InStove(O), Clean(O)),
               effect=And(Cooked(O))),
        Action(name='pickplace',
               parameters=[O, L_s, L_g],
               condition=And(EmptySweptVolume(O, L_s, L_g), AtPose(O, L_s)),
               effect=And(AtPose(O, L_g),
                          Not(AtPose(O, L_s))))  # You should delete!
    ]

    axioms = [
     # For all objects in the world, either object is O1 or if not, then it is not in the region
     Axiom(effect=EmptySweptVolume(O,L_s,L_g),condition=ForAll([O2],\
                                                    Or(Equal(O,O2),\
                                                        Exists([L],(And(AtPose(O2,L),OutsideRegion(O,O2,L,L_s,L_g))))))),
     # Object is in the stove if it is at pose L for which Ls and Lg define stove
     Axiom(effect=InStove(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsStove(L_s,L_g)))),
     Axiom(effect=InSink(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsSink(L_s,L_g)))),
    ]

    cond_streams = [
      EasyGenStream(inputs=[O,L_s,L_g], outputs=[L], conditions=[IsSmaller(L_s,L_g)], effects=[Contained(O,L,L_s,L_g)],\
                    generator=lambda b, ls, lg: (sample_region_pose(b, ls, lg ) for _ in irange(0, INF))),
      EasyTestStream(inputs=[L_s,L_g],conditions=[],effects=[IsSmaller(L_s,L_g)],test=is_smaller,eager=EAGER_TESTS),

      # Generate static predicates that object is contained in sink for which Ls and Lg define the sink. If L was not continuous value,
      # then we would define this in the intial condition and would not be changed by any of the actions (hence static predicate)
      EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsSink(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS),
      EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsStove(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS),

      # OutsideRegion tests if O2 is is outside of the region (Ls,Lg)
      EasyTestStream(inputs=[O,O2,L,L_s,L_g],conditions=[],effects=[OutsideRegion(O,O2,L,L_s,L_g)],test=not_in_region,eager=EAGER_TESTS),
    ]

    ####################
    tamp_problem = sample_one_d_kitchen_problem()

    # instantiate the environment region?
    constants = [
        STOVE_L_S(tamp_problem.stove_region_s),
        STOVE_L_G(tamp_problem.stove_region_g),
        SINK_L_S(tamp_problem.sink_region_s),
        SINK_L_G(tamp_problem.sink_region_g),
    ]

    # define initial state using initial poses of objects
    initial_atoms = [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ] + [IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g)] + [
        IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g)
    ]  # initial_atoms = static predicates, but on steroid

    goal_literals = []
    subgoal_list = [ InSink(tamp_problem.target_obj), \
                     InStove(tamp_problem.target_obj), Cooked(tamp_problem.target_obj) ]
    for i in range(len(subgoal_list)):
        goal_literals = [subgoal_list[0]]

        stream_problem = STRIPStreamProblem(initial_atoms, goal_literals, \
                                              actions+axioms, cond_streams, constants)
        search = get_fast_downward('eager')
        plan, universe = incremental_planner(stream_problem, search=search,\
                                             frequency=1, verbose=True, max_time=200)
        plan = convert_plan(plan)
        # move the object to the new locations; todo: add new predicates
        if len(plan) > 0:  # if no action needed, keep last initial atoms
            initial_atoms = []
        for action in plan:
            action_name = action[0].name
            action_args = action[1]
            if action_name == 'pickplace':
                O = action_args[0].name
                pick_l = action_args[1]
                place_l = action_args[2]
                block = [b for b in tamp_problem.blocks if b.name == O][0]
                initial_atoms += [AtPose(block, place_l)]
        if len(initial_atoms) == 1:
            block = [b for b in tamp_problem.blocks if b.name != O][0]
            initial_atoms += [AtPose(block, tamp_problem.initial_poses[block])]
        initial_atoms += [
            IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g)
        ]
        initial_atoms += [
            IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g)
        ]
Example #10
0
def create_problem(dt, GoalTest, ClearTest, CalcDiffSystem, InitialState):
    """
  Creates a generic non-holonomic motion planning problem
  :return: a :class:`.STRIPStreamProblem`
  """

    # Data types
    X, DX, U = Type(), Type(), Type()

    # Fluent predicates
    AtX = Pred(X)

    # Fluent predicates
    GoalReached = Pred()

    # Static predicates
    ComputeDX = Pred(X, U, DX)
    Dynamics = Pred(X, DX, X)
    AtGoal = Pred(X)
    Clear = Pred(X, X)

    # Free parameters
    X1, X2 = Param(X), Param(X)
    DX1 = Param(DX)
    U1 = Param(U)
    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        Action(name='simulate',
               parameters=[X1, U1, X2, DX1],
               condition=And(AtX(X1), ComputeDX(X1, U1, DX1),
                             Dynamics(X1, DX1, X2), Clear(X1, X2)),
               effect=And(Not(AtX(X1)), AtX(X2))),
    ]

    axioms = [
        Axiom(effect=GoalReached(), condition=Exists([X1], AtGoal(X1))),
    ]

    ####################

    # Conditional stream declarations
    def ComputeDXCalculator(X1F, DX1F):
        X2F = X1F[:]
        for i in range(len(X2F)):
            X2F[i] = X1F[i] + dt * DX1F[i]
        return X2F

    cond_streams = [
        FunctionStream(inputs=[X1, DX1],
                       outputs=[X2],
                       conditions=[],
                       effects=[Dynamics(X1, DX1, X2)],
                       function=ComputeDXCalculator),
        FunctionStream(inputs=[X1, U1],
                       outputs=[DX1],
                       conditions=[],
                       effects=[ComputeDX(X1, U1, DX1)],
                       function=CalcDiffSystem),
        TestStream(inputs=[X1, X2],
                   conditions=[],
                   effects=[Clear(X1, X2)],
                   test=ClearTest,
                   eager=True),
        TestStream(inputs=[X1],
                   conditions=[],
                   effects=[AtGoal(X1)],
                   test=GoalTest,
                   eager=True),
    ]

    ####################

    constants = [
        # TODO - need to declare control inputs (or make a stream for them)
    ]

    initial_atoms = [
        AtX(InitialState),
    ]

    goal_literals = [GoalReached()]

    problem = STRIPStreamProblem(initial_atoms, goal_literals,
                                 actions + axioms, cond_streams, constants)

    return problem
Example #11
0
def create_problem(initRobotPos = (0.5, 0.5),
                   initRobotVar = 0.01,
                   maxMoveDist = 5.0,
                   beaconPos = (1, 1),
                   homePos = (0, 0),
                   goalPosEps = 0.1,
                   goalVar = 0.1,
                   odoErrorRate = 0.1,
                   obsVarPerDistFromSensor = 10.0,
                   minObsVar = 0.001,
                   domainSize = 20,
                   verboseFns = True):
  """
  :return: a :class:`.STRIPStreamProblem`
  """
  # Data types
  POS = Type()   # 2D position
  VAR = Type()   # 2D variance
  DIST = Type()  # positive scalar

  # Fluent predicates
  RobotPos = Pred(POS)
  RobotVar = Pred(VAR)

  # Derived predicates
  KnowYouAreHome = Pred()

  # Static predicates
  DistBetween = Pred(POS, POS, DIST) # Distance between two positions (function)
  LessThanV = Pred(VAR, VAR) # Less than, on distances
  LessThanD = Pred(DIST, DIST) # Less than, on distances
  OdometryVar = Pred(VAR, VAR, DIST) # How does odometry variance increase?
  SensorVar = Pred(VAR, VAR, DIST) # How does an observation decrease variance?
  LegalPos = Pred(POS) # Any legal robot pos

  # Free parameters
  RPOS1, RPOS2, RVAR1, RVAR2 = Param(POS), Param(POS), Param(VAR), Param(VAR)
  DIST1, DIST2 = Param(DIST), Param(DIST)

  def odoVarFun(rv, d):
    odoVar = (d * odoErrorRate)**2
    result = rv + odoVar
    if verboseFns: print 'ovf:', rv, d, result
    return [result]

  def sensorVarFun(rv, d):
    obsVar = max(d / obsVarPerDistFromSensor, minObsVar)
    result = 1.0 / ((1.0 / rv) + (1.0 / obsVar))
    if verboseFns: print 'svf:', rv, d, result
    return [result]

  def randPos():
    while True:
      result = (random.random() * domainSize, random.random() * domainSize)
      print 'rp:', result
      yield [result]

  def legalTest(rp):
    (x, y) = rp
    result = (0 <= x <= domainSize) and (0 <= y <= domainSize)
    if not result: print 'not legal:', rp
    return result

  actions = [
    Action(name='Move',
           parameters=[RPOS1, RPOS2, RVAR1, RVAR2, DIST1],
           condition = And(RobotPos(RPOS1),
                           RobotVar(RVAR1),
                           LegalPos(RPOS2), # Generate an intermediate pos
                           DistBetween(RPOS1, RPOS2, DIST1),
                           LessThanD(DIST1, maxMoveDist),
                           OdometryVar(RVAR1, RVAR2, DIST1)),
           effect = And(RobotPos(RPOS2),
                        RobotVar(RVAR2),
                        Not(RobotPos(RPOS1)),
                        Not(RobotVar(RVAR1)))),

    # Action(name='Look',
    #        parameters=[RPOS1, RVAR1, RVAR2, DIST1],
    #        condition = And(RobotPos(RPOS1),
    #                        RobotVar(RVAR1),
    #                        DistBetween(RPOS1, beaconPos, DIST1),
    #                        SensorVar(RVAR1, RVAR2, DIST1)),
    #        effect = And(RobotVar(RVAR2),
    #                     Not(RobotVar(RVAR1))))

  ]

  axioms = [
    Axiom(effect = KnowYouAreHome(),
          condition = Exists([RPOS1, RVAR1, DIST1], 
                             And(RobotPos(RPOS1),
                                 RobotVar(RVAR1),
                                 DistBetween(RPOS1, homePos, DIST1),
                                 LessThanD(DIST1, goalPosEps),
                                 LessThanV(RVAR1, goalVar))))
  ]

  # Conditional stream declarations
  cond_streams = [
    TestStream(inputs = [RPOS1],
               conditions = [],
               effects = [LegalPos(RPOS1)],
               test = legalTest,
               eager = True),

    GeneratorStream(inputs = [],
                    outputs = [RPOS1],
                    conditions = [],
                    effects = [LegalPos(RPOS1)],
                    generator = randPos),

    GeneratorStream(inputs = [RPOS1, RPOS2],
                    outputs = [DIST1],
                    conditions = [],
                    effects = [DistBetween(RPOS1, RPOS2, DIST1)],
                    generator = lambda rp1, rp2: [distance(rp1, rp2)]),

    GeneratorStream(inputs = [RVAR1, DIST1],
                    outputs = [RVAR2],
                    conditions = [],
                    effects = [OdometryVar(RVAR1, RVAR2, DIST1)],
                    generator = odoVarFun),

    # GeneratorStream(inputs = [RVAR1, DIST1],
    #                 outputs = [RVAR2],
    #                 conditions = [],
    #                 effects = [SensorVar(RVAR1, RVAR2, DIST1)],
    #                 generator = sensorVarFun),

    TestStream(inputs = [DIST1, DIST2],
               conditions = [],
               effects = [LessThanD(DIST1, DIST2)],
               test = lt,
               eager = True),

    TestStream(inputs = [RVAR1, RVAR2],
               conditions = [],
               effects = [LessThanV(RVAR1, RVAR2)],
               test = lt, eager = True)

  ]

  ####################

  constants = [
  ]

  initial_atoms = [
    RobotPos(initRobotPos),
    RobotVar(initRobotVar),
    LegalPos(homePos),
    LegalPos((.1, .1)),
    LegalPos((3.0, .1)),
    LegalPos((6.0, .1))
  ]

  goal_literals = [
    KnowYouAreHome()
    ]

  problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                                 cond_streams, constants)

  return problem
Example #12
0
def create_problem():
  """
  Creates the 1D task and motion planning STRIPStream problem.

  :return: a :class:`.STRIPStreamProblem`
  """

  blocks = ['block%i'%i for i in range(3)]
  num_poses = pow(10, 10)

  initial_config = 0 # the initial robot configuration is 0
  initial_poses = {block: i for i, block in enumerate(blocks)} # the initial pose for block i is i

  goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1

  ####################

  VALUE = Type()

  # Fluent predicates
  AtConf = Pred(VALUE)
  AtPose = Pred(VALUE, VALUE)
  HandEmpty = Pred()
  Holding = Pred(VALUE)

  # Derived predicates
  Safe = Pred(VALUE, VALUE, VALUE)

  # Static predicates
  IsBlock = Pred(VALUE)
  IsPose = Pred(VALUE)
  IsConf = Pred(VALUE)
  LegalKin = Pred(VALUE, VALUE)
  CollisionFree = Pred(VALUE, VALUE, VALUE, VALUE)

  # Free parameters
  B1, B2 = Param(VALUE), Param(VALUE)
  P1, P2 = Param(VALUE), Param(VALUE)
  Q1, Q2 = Param(VALUE), Param(VALUE)

  rename_easy(locals()) # Trick to make debugging easier

  ####################

  # NOTE - it would be easier to just update an in hand pose

  actions = [
    STRIPSAction(name='pick', parameters=[B1, P1, Q1],
      conditions=[IsBlock(B1), IsPose(P1), IsConf(Q1), LegalKin(P1, Q1),
                  AtPose(B1, P1), HandEmpty(), AtConf(Q1)],
      effects=[Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty())]),

    STRIPSAction(name='place', parameters=[B1, P1, Q1],
      conditions=[IsBlock(B1), IsPose(P1), IsConf(Q1), LegalKin(P1, Q1),
                  Holding(B1), AtConf(Q1)] + [Safe(b2, B1, P1) for b2 in blocks],
      effects=[AtPose(B1, P1), HandEmpty(), Not(Holding(B1))]),

    STRIPSAction(name='move', parameters=[Q1, Q2],
      conditions=[IsConf(Q1), IsConf(Q2), AtConf(Q1)],
      effects=[AtConf(Q2), Not(AtConf(Q1))]),
  ]

  axioms = [ # TODO - need to combine axioms
    #Axiom(effect=Safe(B2, B1, P1),
    #      condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), # Infers B2 is at a safe pose wrt B1 at P1
  ]

  ####################

  # Conditional stream declarations
  cond_streams = [
    GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[IsPose(P1)],
                    generator=lambda: xrange(num_poses)), # Enumerating all the poses

    GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[IsPose(P1)], effects=[IsConf(Q1), LegalKin(P1, Q1)],
                    generator=lambda p: [p]), # Inverse kinematics

    TestStream(inputs=[B1, P1, B2, P2], conditions=[IsBlock(B1), IsPose(P1), IsBlock(B2), IsPose(P2)],
               effects=[CollisionFree(B1, P1, B2, P2)], test=lambda b1, p1, b2, p2: p1 != p2, eager=True), # Collision checking
  ]

  ####################

  constants = []

  initial_atoms = [
    IsConf(initial_config),
    AtConf(initial_config),
    HandEmpty()
  ]
  for block, pose in initial_poses.iteritems():
    initial_atoms += [
      IsBlock(block),
      IsPose(pose),
      AtPose(block, pose),
    ]
  goal_literals = []
  for block, pose in goal_poses.iteritems():
    initial_atoms += [
      IsBlock(block),
      IsPose(pose),
    ]
    goal_literals.append(AtPose(block, pose))

  problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)

  return problem
from toyTest import glob, makeOperators, Bd, ObjState, ObjLoc

OBJ, LOC = Type(), Type()

At = Predicate(OBJ, LOC)
Clear = Predicate(LOC)
Clean = Predicate(OBJ)
WetPaint = Predicate(OBJ)
DryPaint = Predicate(OBJ)

IsDryer = Predicate(LOC)
IsPainter = Predicate(LOC)
IsWasher = Predicate(LOC)

O, L1, L2 = Param(OBJ), Param(LOC), Param(LOC)

actions = [
    Action(name='transport',
           parameters=[O, L1, L2],
           condition=And(At(O, L1), Clear(L2)),
           effect=And(At(O, L2), Clear(L1), Not(At(O, L1)), Not(
               Clear(L2)))),  # NOTE - Leslie and Tomas call this Move
    Action(
        name='wash',
        parameters=[O, L1],
        condition=And(At(O, L1), IsWasher(L1)),
        #effect=And(Clean(O)))
        effect=And(Clean(O), Not(WetPaint(O)), Not(DryPaint(O)))),
    Action(
        name='paint',
def create_problem(n=50):
    """
  Creates the 1D task and motion planning STRIPStream problem.

  :return: a :class:`.STRIPStreamProblem`
  """

    blocks = ['block%i' % i for i in xrange(n)]
    num_poses = pow(10, 10)

    initial_config = 0  # the initial robot configuration is 0
    initial_poses = {block: i
                     for i, block in enumerate(blocks)
                     }  # the initial pose for block i is i

    #goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1
    goal_poses = {blocks[0]: 1}  # the goal pose for block i is i+1
    #goal_poses = {blocks[0]: 100} # the goal pose for block i is i+1

    ####################

    # Data types
    CONF, BLOCK, POSE = Type(), Type(), Type()

    # Fluent predicates
    AtConf = Pred(CONF)
    AtPose = Pred(BLOCK, POSE)
    IsPose = Pred(BLOCK, POSE)
    HandEmpty = Pred()
    Holding = Pred(BLOCK)
    Moved = Pred()  # Prevents double movements

    # Derived predicates
    Safe = Pred(BLOCK, POSE)
    #Unsafe = Pred(BLOCK, BLOCK, POSE)
    Unsafe = Pred(BLOCK, POSE)
    #Unsafe = Pred(POSE)

    # Static predicates
    Kin = Pred(POSE, CONF)
    CFree = Pred(POSE, POSE)
    Collision = Pred(POSE, POSE)

    # Free parameters
    B1, B2 = Param(BLOCK), Param(BLOCK)
    P1, P2 = Param(POSE), Param(POSE)
    Q1, Q2 = Param(CONF), Param(CONF)

    rename_easy(locals())  # Trick to make debugging easier

    ####################

    # TODO: drp_pddl_adl/domains/tmp.py has conditional effects When(Colliding(pose, trajectory), Not(Safe(obj, trajectory))))
    # TODO: maybe this would be okay if the effects really are sparse (i.e. not many collide)

    # http://www.fast-downward.org/TranslatorOutputFormat
    # FastDownward will always make an axiom for the quantified expressions
    # I don't really understand why FastDownward does this... It doesn't seem to help
    # It creates n "large" axioms that have n-1 conditions (removing the Equal)
    # universal conditions: Universal conditions in preconditions, effect conditions and the goal are internally compiled into axioms by the planner.
    # Therefore, heuristics that do not support axioms (see previous point) do not support universal conditions either.
    # http://www.fast-downward.org/PddlSupport

    # TODO: the compilation process actually seems to still make positive axioms for things.
    # The default value is unsafe and it creates positive axioms...
    # A heuristic cost of 4 is because it does actually move something out the way
    # drp_pddl/domains/tmp_separate.py:class CollisionAxiom(Operator, Refinable, Axiom):
    # TODO: maybe I didn't actually try negative axioms like I thought?
    # See also 8/24/16 and 8/26/16 notes
    # Maybe the translator changed sometime making it actually invert these kinds of axioms
    # TODO: maybe this would be better if I did a non-boolean version that declared success if at any pose other than this one
    # It looks like temporal fast downward inverts axioms as well

    actions = [
        Action(
            name='pick',
            parameters=[B1, P1, Q1],
            condition=And(AtPose(B1, P1), HandEmpty(), IsPose(B1, P1),
                          Kin(P1, Q1)),  # AtConf(Q1),
            effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()),
                       Not(Moved()))),
        Action(
            name='place',
            parameters=[B1, P1, Q1],
            condition=And(
                Holding(B1),
                IsPose(B1, P1),
                Kin(P1, Q1),  # AtConf(Q1),
                #*[Safe(b, P1) for b in blocks]),
                *[Not(Unsafe(b, P1)) for b in blocks]),
            #*[Not(Unsafe(b, B1, P1)) for b in blocks]),
            #*[Or(Equal(b, B1), Not(Unsafe(b, B1, P1))) for b in blocks]),
            #ForAll([B2], Or(Equal(B1, B2), Not(Unsafe(B2, P1))))),
            #ForAll([B2], Or(Equal(B1, B2), Safe(B2, P1)))),
            #ForAll([B2], Not(Unsafe(B2, B1, P1)))),
            effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)),
                       Not(Moved()))),

        # Action(name='place', parameters=[B1, P1, Q1],
        #        condition=And(Holding(B1), AtConf(Q1), IsPose(B1, P1), Kin(P1, Q1),
        #                      #ForAll([B2], Or(Equal(B1, B2),
        #                      #                Exists([P2], And(AtPose(B2, P2), CFree(P1, P2)))))),
        #                      ForAll([B2], Or(Equal(B1, B2), # I think this compiles to the forward axioms that achieve things...
        #                                      Exists([P2], And(AtPose(B2, P2), IsPose(B2, P2), Not(Collision(P1, P2))))))),
        #                      #ForAll([B2], Or(Equal(B1, B2),
        #                      #                Not(Exists([P2], And(AtPose(B2, P2), Not(CFree(P1, P2)))))))),
        #                      #ForAll([B2], Or(Equal(B1, B2), # Generates a ton of axioms...
        #                      #                Not(Exists([P2], And(AtPose(B2, P2), IsPose(B2, P2), Collision(P1, P2))))))),
        #        effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)), Not(Moved()))),

        #Action(name='place', parameters=[B1, P1, Q1],
        #       condition=And(Holding(B1), AtConf(Q1), IsPose(B1, P1), Kin(P1, Q1), Not(Unsafe(P1))),
        #       effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)), Not(Moved()))),

        #Action(name='move', parameters=[Q1, Q2],
        #  condition=And(AtConf(Q1), Not(Moved())),
        #  effect=And(AtConf(Q2), Moved(), Not(AtConf(Q1)))),

        # TODO: a lot of the slowdown is because of the large number of move axioms

        # Inferred Safe
        #Translator operators: 1843
        #Translator axioms: 3281
        #Search Time: 10.98

        # Explicit Safe
        #Translator operators: 1843
        #Translator axioms: 3281
        #Search Time: 9.926
    ]

    # TODO: translate_strips_axiom in translate.py

    # TODO: maybe this is bad because of shared poses...
    # 15*15*15*15 = 50625

    # Takeaways: using the implicit collision is good because it results in fewer facts
    # The negated axiom does better than the normal axiom by a little bit for some reason...
    axioms = [
        # For some reason, the unsafe version of this is much better than the safe version in terms of making axioms?
        # Even with one collision recorded, it makes a ton of axioms
        #Axiom(effect=Safe(B2, P1),
        #      condition=Or(Holding(B2), Exists([P2], And(AtPose(B2, P2), IsPose(B2, P2), Not(Collision(P1, P2)))))),

        #Axiom(effect=Unsafe(B2, B1, P1),
        #      condition=And(Not(Equal(B1, B2)),
        #           # Exists([P2], And(AtPose(B2, P2), Not(CFree(P1, P2)))))),
        #            Exists([P2], And(AtPose(B2, P2), Collision(P1, P2))))),

        #Axiom(effect=Unsafe(B2, B1, P1),
        #      condition=Exists([P2], And(AtPose(B2, P2), Not(CFree(P1, P2))))),

        # TODO: I think the inverting is implicitly doing the same thing I do where I don't bother making an axiom if always true
        Axiom(effect=Unsafe(B2, P1),
              condition=Exists([P2],
                               And(AtPose(B2, P2), IsPose(B2, P2),
                                   Collision(P1,
                                             P2)))),  # Don't even need IsPose?
        # This is the best config. I think it is able to work well because it can prune the number of instances when inverting
        # It starts to take up a little time when there are many possible placements for things though
        # TODO: the difference is that it first instantiates axioms and then inverts!

        #Axiom(effect=Unsafe(B2, P1),
        #        condition=Exists([P2], And(AtPose(B2, P2), IsPose(B2, P2), Not(CFree(P1, P2)))))
        # This doesn't result in too many axioms but takes a while to instantiate...

        #Axiom(effect=Unsafe(P1), # Need to include the not equal thing
        #      condition=Exists([B2, P2], And(AtPose(B2, P2), IsPose(B2, P2), Collision(P1, P2)))),

        # TODO: Can turn off options.filter_unreachable_facts
    ]

    ####################

    # Conditional stream declarations
    cond_streams = [
        #GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[],
        #                generator=lambda: ((p,) for p in xrange(n, num_poses))),
        GeneratorStream(
            inputs=[B1],
            outputs=[P1],
            conditions=[],
            effects=[IsPose(B1, P1)],
            #generator=lambda b: ((p,) for p in xrange(n, num_poses))),
            generator=lambda b: iter([(n + blocks.index(b), )])
        ),  # Unique placements
        GeneratorStream(inputs=[P1],
                        outputs=[Q1],
                        conditions=[],
                        effects=[Kin(P1, Q1)],
                        generator=lambda p: [(p, )]),  # Inverse kinematics

        #TestStream(inputs=[P1, P2], conditions=[], effects=[CFree(P1, P2)],
        #           test=lambda p1, p2: p1 != p2, eager=True),
        #           #test = lambda p1, p2: True, eager = True),
        TestStream(inputs=[P1, P2],
                   conditions=[],
                   effects=[Collision(P1, P2)],
                   test=lambda p1, p2: p1 == p2,
                   eager=False,
                   sign=False),
    ]

    ####################

    constants = [
        CONF(initial_config)  # Any additional objects
    ]

    initial_atoms = [
        AtConf(initial_config),
        HandEmpty(),
    ] + [AtPose(block, pose) for block, pose in initial_poses.items()] + [
        IsPose(block, pose)
        for block, pose in (initial_poses.items() + goal_poses.items())
    ]

    goal_literals = [
        AtPose(block, pose) for block, pose in goal_poses.iteritems()
    ]

    problem = STRIPStreamProblem(initial_atoms, goal_literals,
                                 actions + axioms, cond_streams, constants)

    return problem
Example #15
0
def compile_problem(tamp_problem):
    """
    Constructs a STRIPStream problem for the continuous TMP problem.

    :param tamp_problem: a :class:`.TMPProblem`
    :return: a :class:`.STRIPStreamProblem`
    """

    B1, B2 = Param(BLOCK), Param(BLOCK)
    P1, P2 = Param(POSE), Param(POSE)
    Q1, Q2 = Param(CONF), Param(CONF)
    R = Param(REGION)

    actions = [
        Action(name='pick',
               parameters=[B1, P1, Q1],
               condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1),
                             LegalKin(P1, Q1)),
               effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),
        Action(name='place',
               parameters=[B1, P1, Q1],
               condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1),
                             ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1,
                                                                 P1)))),
               effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),
        Action(name='move',
               parameters=[Q1, Q2],
               condition=AtConf(Q1),
               effect=And(AtConf(Q2), Not(AtConf(Q1)))),
        Action(name='clean',
               parameters=[B1, R],
               condition=And(InRegion(B1, R), IsSink(R)),
               effect=And(Cleaned(B1))),
        Action(name='cook',
               parameters=[B1, R],
               condition=And(InRegion(B1, R), IsStove(R)),
               effect=And(Cooked(B1))),
    ]

    axioms = [
        Axiom(effect=InRegion(B1, R),
              condition=Exists([P1], And(AtPose(B1, P1), Contained(B1, P1,
                                                                   R)))),
        Axiom(effect=Safe(B2, B1, P1),
              condition=Exists([P2],
                               And(AtPose(B2, P2),
                                   CollisionFree(B1, P1, B2, P2)))),
    ]

    cond_streams = [
        EasyGenStream(inputs=[R, B1],
                      outputs=[P1],
                      conditions=[CanPlace(B1, R)],
                      effects=[Contained(B1, P1, R)],
                      generator=lambda r, b:
                      (sample_region_pose(r, b) for _ in irange(0, INF))),
        EasyGenStream(inputs=[P1],
                      outputs=[Q1],
                      conditions=[],
                      effects=[LegalKin(P1, Q1)],
                      generator=lambda p: iter([inverse_kinematics(p)])),
        EasyTestStream(inputs=[R, B1, P1],
                       conditions=[],
                       effects=[Contained(B1, P1, R)],
                       test=in_region,
                       eager=EAGER_TESTS,
                       plannable=False),
        EasyTestStream(inputs=[B1, P1, B2, P2],
                       conditions=[],
                       effects=[CollisionFree(B1, P1, B2, P2)],
                       test=lambda *args: not are_colliding(*args),
                       eager=EAGER_TESTS),
    ]

    constants = [
        REGION(tamp_problem.env_region),
    ]

    initial_atoms = [
        AtConf(tamp_problem.initial_config),
    ] + [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ] + [
        CanPlace(block, tamp_problem.env_region)
        for block in tamp_problem.initial_poses
    ]

    if tamp_problem.initial_holding is None:
        initial_atoms.append(HandEmpty())
    else:
        initial_atoms.append(Holding(tamp_problem.initial_holding))

    goal_literals = []
    if tamp_problem.goal_config is not None:
        goal_literals.append(AtConf(tamp_problem.goal_config))
    if tamp_problem.goal_holding is False:
        goal_literals.append(HandEmpty())
    elif tamp_problem.goal_holding is not None:
        goal_literals.append(Holding(tamp_problem.goal_holding))
    for block, goal in tamp_problem.goal_poses:
        goal_literals.append(AtPose(block, goal))
    for block, goal in tamp_problem.goal_regions:
        initial_atoms.append(CanPlace(block, goal))
        goal_literals.append(InRegion(block, goal))

    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                              cond_streams, constants)
def compile_problem(tamp_problem):
    """
  Constructs a STRIPStream problem for the countable TMP problem.

  :param tamp_problem: a :class:`.TMPProblem`
  :return: a :class:`.STRIPStreamProblem`
  """

    # NOTE - the simple focused algorithm gives "Could not find instantiation for PNE!" when this is moved outside
    B1, B2 = Param(BLOCK), Param(BLOCK)
    P1, P2 = Param(POSE), Param(POSE)
    Q1, Q2 = Param(CONF), Param(CONF)

    actions = [
        Action(name='pick',
               parameters=[B1, P1, Q1],
               condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1),
                             LegalKin(P1, Q1)),
               effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),
        Action(
            name='place',
            parameters=[B1, P1, Q1],
            condition=And(
                Holding(B1),
                AtConf(Q1),
                LegalKin(P1, Q1),
                #ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))),
                ForAll([B2], Or(Equal(B1, B2), Safe(B2, P1)))),
            #*[Or(Equal(B1, BLOCK(b2)), Safe(b2, P1)) for b2 in tamp_problem.initial_poses]),
            effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),
        Action(name='move',
               parameters=[Q1, Q2],
               condition=AtConf(Q1),
               effect=And(AtConf(Q2), Not(AtConf(Q1)))),
    ]

    axioms = [
        #Axiom(effect=Safe(B2, B1, P1), condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))),
        Axiom(effect=Safe(B2, P1),
              condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(P1,
                                                                       P2)))),
    ]

    # NOTE - this needs to be inside the method so you make new streams each time
    cond_streams = [
        #EasyGenStream(inputs=[P2], outputs=[P1], conditions=[], effects=[],
        #              generator=lambda a: irange(0, NUM_POSES)),
        EasyGenStream(inputs=[],
                      outputs=[P1],
                      conditions=[],
                      effects=[],
                      generator=lambda: irange(0, NUM_POSES)),
        EasyGenStream(inputs=[P1],
                      outputs=[Q1],
                      conditions=[],
                      effects=[LegalKin(P1, Q1)],
                      generator=lambda p: iter([p])),
        #EasyTestStream(inputs=[B1, P1, B2, P2], conditions=[], effects=[CollisionFree(B1, P1, B2, P2)],
        #               test=lambda b1, p1, b2, p2: p1 != p2, eager=EAGER_TESTS),
        EasyTestStream(inputs=[P1, P2],
                       conditions=[],
                       effects=[CollisionFree(P1, P2)],
                       test=lambda p1, p2: p1 != p2,
                       eager=EAGER_TESTS),
    ]

    constants = []

    initial_atoms = [
        AtConf(tamp_problem.initial_config),
    ] + [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ]
    if tamp_problem.initial_holding is False:
        initial_atoms.append(HandEmpty())
    else:
        initial_atoms.append(Holding(tamp_problem.initial_holding, BLOCK))

    goal_literals = []
    if tamp_problem.goal_holding is False:
        goal_literals.append(HandEmpty())
    elif tamp_problem.goal_holding is not None:
        goal_literals.append(Holding(tamp_problem.goal_holding))
    for block, goal in tamp_problem.goal_poses.iteritems():
        goal_literals.append(AtPose(block, goal))

    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                              cond_streams, constants)
Example #17
0
def compile_belief(belief, goal):
    locations, _, _ = maximum_likelihood_obs(belief)

    constants = map(OBJ, belief.objLoc.keys()) + map(POSE,
                                                     belief.occupancies.keys())
    initial_atoms = []
    #initial_atoms += [At(obj, p) for obj, p in locations.iteritems()]
    initial_atoms += [
        BAt(obj, p, round(belief.objLocDist(obj).prob(p), 3))
        for obj, p in locations.iteritems()
    ]  # NOTE - using the maximum belief here
    goal_literals = []
    for fluent in goal.fluents:
        if isinstance(fluent, Bd):
            literal, arg, prob = fluent.args
            if isinstance(literal, ObjLoc):
                goal_literals.append(
                    BAtAbove(literal.args[0], literal.value, prob))
            elif isinstance(literal, ObjState) and arg == 'clean':
                goal_literals.append(BClean(literal.args[0], prob))
            else:
                raise NotImplementedError(literal)
        else:
            raise NotImplementedError(fluent)

    O, P, B = Param(OBJ), Param(POSE), Param(BELIEF)
    B1, B2 = Param(BELIEF), Param(BELIEF)

    p_obs_t = 1 - glob.failProbs['Look']
    p_obs_f = 1 - p_obs_t
    #cost = prob_cost(p_obs_t) # This isn't informative
    #cost = prob_cost(float(prior.name)*p_obs_t) # TODO - need to automatically derive the costs

    actions = [
        #PerfectLook(),
        Look(p_obs_t),
        #BackwardLook(p_obs_t),
        Transport(),
    ]
    axioms = [
        Axiom(BAtAbove(O, P, B2),
              Exists([B1], And(BAt(O, P, B1), Above(B1, B2)))),
        #Axiom(IsPossible(B1, B2), Exists([B], And(IsUpdate(B, B2), Above(B1, B)))), # NOTE - this only uses static facts
    ]

    cond_streams = [
        GeneratorStream(inputs=[B1],
                        outputs=[B2],
                        conditions=[],
                        effects=[IsUpdate(B1, B2)],
                        generator=lambda b1:
                        [round(forward_belief(b1, p_obs_t, p_obs_f), 3)]),
        #GeneratorStream(inputs=[B2], outputs=[B1], conditions=[], effects=[IsUpdate(B1, B2)],
        #                generator=lambda b2: [round(inverse_belief(b2, p_obs_t, p_obs_f), 3)]), # NOTE - I previously used a Deferred Literal to produce the initial belief

        #TestStream(inputs=[O, P, B1], conditions=[], effects=[BAt(O, P, B1)],
        #           test=lambda o, p, b: belief.objLocDist(o).prob(p) >= b, eager=True),
        TestStream(inputs=[B1, B2],
                   conditions=[],
                   effects=[Above(B1, B2)],
                   test=lambda b1, b2: b1 >= b2,
                   eager=True),
        #TestStream(inputs=[B1, B2, B], conditions=[IsUpdate(B, B2), Above(B1, B)], effects=[IsPossible(B1, B2)],
        #           test=lambda *args: True, eager=True),
    ]

    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                              cond_streams, constants)
Example #18
0
def compile_problem(estimator, task):
    # Data types
    CONF = Type()
    SURFACE = Type()  # Difference between fixed and movable objects
    ITEM = Type()
    POSE = Type()
    CLASS = Type()

    # Fluent predicates
    AtConf = Pred(CONF)
    HandEmpty = Pred()
    Holding = Pred(ITEM)
    AtPose = Pred(ITEM, POSE)
    Supported = Pred(POSE, SURFACE)  # Fluent
    Localized = Pred(OBJECT)
    Measured = Pred(OBJECT)

    # Static predicates
    IsKin = Pred(POSE, CONF)
    IsClass = Pred(OBJECT, CLASS)
    IsVisible = Pred(SURFACE, CONF)
    IsSupported = Pred(POSE, SURFACE)  # Static

    # Functions
    ScanRoom = Func(SURFACE)
    #ScanTable = Func(SURFACE, TYPE)
    ScanTable = Func(
        SURFACE, ITEM)  # TODO: could include more specific vantage point costs
    Distance = Func(CONF, CONF)

    # Derived
    On = Pred(ITEM, SURFACE)
    ComputableP = Pred(POSE)
    ComputableQ = Pred(CONF)

    # Free parameters
    Q1, Q2 = Param(CONF), Param(CONF)
    S1 = Param(SURFACE)
    B1, B2 = Param(ITEM), Param(ITEM)
    P1, P2 = Param(POSE), Param(POSE)

    rename_easy(locals())  # Trick to make debugging easier

    # TODO: could just do easier version of this that doesn't require localized to start

    actions = [
        Action(
            name='pick',
            parameters=[B1, P1, Q1],  # TODO: Visibility constraint
            condition=And(Localized(B1), AtPose(B1, P1), HandEmpty(),
                          AtConf(Q1), IsKin(P1, Q1)),
            effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),
        Action(name='place',
               parameters=[B1, P1, Q1],
               condition=And(Holding(B1), AtConf(Q1), IsKin(P1, Q1)),
               effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),
        Action(name='move',
               parameters=[Q1, Q2],
               condition=And(AtConf(Q1), ComputableQ(Q2)),
               effect=And(AtConf(Q2), Not(AtConf(Q1)), Cost(Distance(Q1,
                                                                     Q2)))),
        Action(name='scan_room',
               parameters=[S1],
               condition=Not(Localized(S1)),
               effect=And(Localized(S1), Cost(ScanRoom(S1)))),
        # TODO: need to set later poses to be usable or not to constrain order
        Action(name='scan_table',
               parameters=[S1, B1, P1, Q1],
               condition=And(Localized(S1), AtConf(Q1), IsVisible(S1, Q1),
                             Not(Localized(B1))),
               effect=And(Localized(B1), Measured(P1), Supported(P1, S1),
                          Cost(ScanTable(S1, B1)))),
    ]

    axioms = [
        # TODO: axiom for on? Might need a stream that generates initial fluents for On
        # TODO: axiom that says that all fake values depending on a certain one now are usable
        # TODO: could use stream predicates as fluents (as long as it doesn't break anything...)
        Axiom(effect=On(B1, S1),
              condition=Exists([P1],
                               And(AtPose(B1, P1),
                                   Or(IsSupported(P1, S1), Supported(P1,
                                                                     S1))))),

        # TODO: compile automatically
        Axiom(effect=ComputableQ(Q1),
              condition=Or(Measured(Q1),
                           Exists([P1], And(IsKin(P1, Q1), ComputableP(P1))),
                           Exists([S1], And(IsVisible(S1, Q1),
                                            Localized(S1))))),
        Axiom(effect=ComputableP(P1),
              condition=Or(
                  Measured(P1),
                  Exists([S1], And(IsSupported(P1, S1), Localized(S1))))),
    ]

    #####

    surface_types = estimator.surface_octomaps.keys()
    item_types = estimator.object_octomaps.keys()
    names_from_type = defaultdict(list)
    known_poses = {}
    holding = None

    def add_type(cl):
        name = '{}{}'.format(cl, len(names_from_type[cl]))
        names_from_type[cl].append(name)
        return name

    # TODO: this is all very similar to the generic open world stuff
    if estimator.holding is not None:
        holding = add_type(estimator.holding)
    for cl, octomap in estimator.surface_octomaps.items(
    ):  # TODO: generic surface object
        for pose in octomap.get_occupied():
            known_poses[add_type(cl)] = pose
    for cl, octomap in estimator.object_octomaps.items():
        for pose in octomap.get_occupied():
            known_poses[add_type(cl)] = pose
    print dict(names_from_type), known_poses

    # Human tells you to move block -> at least one block
    # At least one block -> at least one surface
    # TODO: generate fake properties about these fake values?
    goal_objects, goal_surfaces = entities_from_task(task)
    for cl in surface_types:
        add_type(cl)
    #for cl in goal_surfaces:
    #  for i in xrange(len(names_from_type[cl]), goal_surfaces[cl]):
    #    add_type(cl)
    #for cl in item_types:
    for cl in goal_objects:
        for i in xrange(len(names_from_type[cl]), goal_objects[cl]):
            add_type(cl)

    #####

    initial_atoms = [
        AtConf(estimator.robot_conf),
        Measured(CONF(estimator.robot_conf))
    ]
    if holding is None:
        initial_atoms.append(HandEmpty())
    else:
        initial_atoms.append(Holding(holding))

    class_from_name = {
        name: ty
        for ty in names_from_type for name in names_from_type[ty]
    }
    for name, ty in class_from_name.iteritems():
        ENTITY = SURFACE if ty in surface_types else ITEM
        initial_atoms.append(IsClass(ENTITY(name), ty))
        if name in known_poses:
            initial_atoms.append(Localized(ENTITY(name)))
            if ENTITY == ITEM:
                pose = known_poses[name]
                initial_atoms += [AtPose(name, pose), Measured(POSE(pose))]
        else:
            if ENTITY == ITEM:
                pose = 'p_init_{}'.format(
                    name
                )  # The object should always be at this pose (we just can't do anything about it yet)
                initial_atoms += [AtPose(name, pose)]

    goal_literals = []
    if task.holding is None:
        goal_literals.append(HandEmpty())
    elif task.holding is not False:
        goal_literals.append(
            Exists([B1], And(Holding(B1), IsClass(B1, task.holding))))
    for obj, surface in task.object_surfaces:
        goal_literals.append(
            Exists([B1, S1],
                   And(On(B1, S1), IsClass(B1, obj), IsClass(S1, surface))))
    goal_formula = And(*goal_literals)

    ####################

    TOLERANCE = 0.1

    def is_visible(table, conf):
        x, y = conf
        pose = known_poses[table]
        #return (pose == x) and (y == 2)
        #return (pose == x) and (y == 2)
        return (pose == x) and (abs(y - 2) < TOLERANCE)

    def is_kinematic(pose, conf):
        x, y = conf
        #return (pose == x) and (y == 1)
        return (pose == x) and (abs(y - 1) < TOLERANCE)

    ####################

    def sample_visible(table):  # TODO: could generically do this with poses
        if table in known_poses:
            y = 2
            #y += round(uniform(-TOLERANCE, TOLERANCE), 3)
            conf = (known_poses[table], y)
            assert is_visible(table, conf)
        else:
            conf = 'q_vis_{}'.format(table)
        yield (conf, )

    def inverse_kinematics(pose):  # TODO: list stream that uses ending info
        # TODO: only do if localized as well?
        # TODO: is it helpful to have this even if the raw value is kind of wrong (to steer the search)
        if type(pose) != str:
            y = 1
            #y += round(uniform(-TOLERANCE, TOLERANCE), 3)
            conf = (pose, y)
            assert is_kinematic(pose, conf)
        else:
            conf = 'q_ik_{}'.format(pose)
        yield (conf, )

    def sample_table(table):
        if table in known_poses:
            pose = known_poses[table]
        else:
            pose = 'p_{}'.format(table)
        yield (pose, )

    ####################

    MAX_DISTANCE = 10

    # TODO: maybe I don't need to worry about normalizing. I can just pretend non-parametric again for planning
    def scan_surface_cost(
            surface, obj):  # TODO: what about multiple scans of the belief?
        fail_cost = 100
        surface_cl = class_from_name[surface]
        obj_cl = class_from_name[obj]
        prob = 1.0
        if obj_cl in estimator.object_prior:
            prob *= estimator.object_prior[obj_cl].get(surface_cl, 0)
        if surface in known_poses:
            prob *= estimator.object_octomaps[obj_cl].get_prob(
                known_poses[surface])
        else:
            prob *= 0.1  # Low chance if you don't even know the table exists
            # TODO: could even include the probability the table exists
        #return expected_cost(1, fail_cost, prob)
        return mdp_cost(1, fail_cost, prob)

    def scan_room_cost(surface):
        # TODO: try to prove some sort of bound on the cost to recover will suffice?
        fail_cost = 100
        cl = class_from_name[surface]
        occupied_poses = {
            known_poses[n]
            for n in names_from_type[cl] if n in known_poses
        }
        p_failure = 1.0
        for pose in estimator.poses:
            if pose not in occupied_poses:
                p_failure *= (1 -
                              estimator.surface_octomaps[cl].get_prob(pose))
        return 1 * (1 - p_failure) + fail_cost * p_failure

    def distance_cost(q1, q2):
        if str in (type(q1), type(q2)):
            return MAX_DISTANCE  # TODO: take the max possible pose distance
        # TODO: can use the info encoded within these to obtain better bounds
        return np.linalg.norm(np.array(q2) - np.array(q1))

    ####################

    # TODO: could add measured as the output to these
    streams = [
        GeneratorStream(inputs=[P1],
                        outputs=[Q1],
                        conditions=[],
                        effects=[IsKin(P1, Q1)],
                        generator=inverse_kinematics),
        GeneratorStream(inputs=[S1],
                        outputs=[Q1],
                        conditions=[],
                        effects=[IsVisible(S1, Q1)],
                        generator=sample_visible),
        GeneratorStream(inputs=[S1],
                        outputs=[P1],
                        conditions=[],
                        effects=[IsSupported(P1, S1)],
                        generator=sample_table),
        CostStream(inputs=[S1, B1],
                   conditions=[],
                   effects=[ScanTable(S1, B1)],
                   function=scan_surface_cost),
        CostStream(inputs=[Q1, Q2],
                   conditions=[],
                   effects=[Distance(Q1, Q2),
                            Distance(Q2, Q1)],
                   function=distance_cost),
        CostStream(inputs=[S1],
                   conditions=[],
                   effects=[ScanRoom(S1)],
                   function=scan_room_cost),

        # TODO: make an is original precondition and only apply these to original values?
        # I suppose I could apply to all concrete things but that's likely not useful
        #TestStream(inputs=[S1, Q1], conditions=[IsOriginal(Q1)], effects=[IsVisible(S1, Q1)],
        #           test=is_visible, eager=True),
        #TestStream(inputs=[P1, Q1], conditions=[IsOriginal(Q1), IsOriginal(Q1)], effects=[IsKin(P1, Q1)],
        #           test=is_kinematic, eager=True),

        #GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[IsVisible(P1, Q1)],
        #                generator=sample_visible),
    ]

    problem = STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms,
                                 streams, [])

    def command_from_action((action, args)):
        if action.name == 'scan_room':
            return simulate_scan, []
        if action.name in ('scan_table', 'look_block'):
            return simulate_look, []
        if action.name == 'move':
            q1, q2 = map(get_value, args)
            return simulate_move, [q2]
        if action.name == 'pick':
            o, p, q = map(get_value, args)
            return simulate_pick, [class_from_name[o]]
        if action.name == 'place':
            return simulate_place, []
        raise ValueError(action.name)

    return problem, command_from_action
Example #19
0
def create_problem():
    """
    Creates the 1D task and motion planning STRIPStream problem.

    :return: a :class:`.STRIPStreamProblem`
    """

    blocks = ['block%i' % i for i in range(3)]
    num_poses = pow(10, 10)

    initial_config = 0  # the initial robot configuration is 0
    initial_poses = {block: i for i, block in enumerate(
        blocks)}  # the initial pose for block i is i

    # the goal pose for block i is i+1
    goal_poses = {block: i + 1 for i, block in enumerate(blocks)}

    ####################

    # Data types
    CONF, BLOCK, POSE = Type(), Type(), Type()

    # Fluent predicates
    AtConf = Pred(CONF)
    AtPose = Pred(BLOCK, POSE)
    HandEmpty = Pred()
    Holding = Pred(BLOCK)

    # Derived predicates
    Safe = Pred(BLOCK, BLOCK, POSE)

    # Static predicates
    LegalKin = Pred(POSE, CONF)
    CollisionFree = Pred(BLOCK, POSE, BLOCK, POSE)

    # Free parameters
    B1, B2 = Param(BLOCK), Param(BLOCK)
    P1, P2 = Param(POSE), Param(POSE)
    Q1, Q2 = Param(CONF), Param(CONF)

    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        Action(name='pick', parameters=[B1, P1, Q1],
               condition=And(AtPose(B1, P1), HandEmpty(),
                             AtConf(Q1), LegalKin(P1, Q1)),
               effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),

        Action(name='place', parameters=[B1, P1, Q1],
               condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1),
                             ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))),  # TODO - convert to finite blocks case?
               effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),

        Action(name='move', parameters=[Q1, Q2],
               condition=AtConf(Q1),
               effect=And(AtConf(Q2), Not(AtConf(Q1)))),
    ]

    axioms = [
        Axiom(effect=Safe(B2, B1, P1),
              condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))),  # Infers B2 is at a safe pose wrt B1 at P1
    ]

    ####################

    # Conditional stream declarations
    cond_streams = [
        GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[],
                        generator=lambda: ((p,) for p in xrange(num_poses))),  # Enumerating all the poses

        GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[LegalKin(P1, Q1)],
                        generator=lambda p: [(p,)]),  # Inverse kinematics

        TestStream(inputs=[B1, P1, B2, P2], conditions=[], effects=[CollisionFree(B1, P1, B2, P2)],
                   test=lambda b1, p1, b2, p2: p1 != p2, eager=True),  # Collision checking
    ]

    ####################

    constants = [
        CONF(initial_config)  # Any additional objects
    ]

    initial_atoms = [
        AtConf(initial_config),
        HandEmpty()
    ] + [
        AtPose(block, pose) for block, pose in initial_poses.iteritems()
    ]

    goal_literals = [AtPose(block, pose)
                     for block, pose in goal_poses.iteritems()]

    problem = STRIPStreamProblem(
        initial_atoms, goal_literals, actions + axioms, cond_streams, constants)

    return problem
Example #20
0
def create_problem(initRobotPos = (0.5, 0.5),
                   initRobotVar = 0.01,
                   maxMoveDist = 5.0,
                   beaconPos = (1, 1),
                   homePos = (0, 0),
                   goalPosEps = 0.1,
                   goalVar = 0.1,
                   odoErrorRate = 0.1,
                   obsVarPerDistFromSensor = 10.0,
                   minObsVar = 0.001,
                   domainSize = 20,
                   verboseFns = False):
  """
  :return: a :class:`.STRIPStreamProblem`
  """
  # Data types
  POS = Type()   # 2D position
  VAR = Type()   # 2D variance
  BEACON = Type()  # 2D position

  # Fluent predicates
  RobotPos = Pred(POS)
  RobotVar = Pred(VAR)

  # Derived predicates
  KnowYouAreHome = Pred()

  # Static predicates
  Odometry = Pred(POS, VAR, POS, VAR)
  Sensor = Pred(POS, VAR, BEACON, VAR)
  LegalPosVar = Pred(POS, VAR)
  NearbyPos = Pred(POS, POS)
  NearGoalPos = Pred(POS)
  NearGoalVar = Pred(VAR)

  # Free parameters
  RPOS1, RPOS2 = Param(POS), Param(POS)
  RVAR1, RVAR2 = Param(VAR), Param(VAR)
  BPOS = Param(BEACON)

  rename_easy(locals())

  # Helper functions
  def distance(p1, p2):
    return math.sqrt(sum([(a - b)**2 for (a,b) in zip(p1, p2)]))

  def odoVarFun(rp1, rv, rp2):
    d = distance(rp1, rp2)
    odoVar = (d * odoErrorRate)**2
    result = rv + odoVar
    if verboseFns: print 'ovf:', rv, d, result
    return [result]

  def sensorVarFun(rp, rv, bp):
    d = distance(rp, bp)
    obsVar = max(d / obsVarPerDistFromSensor, minObsVar)
    #result = round(1.0 / ((1.0 / rv) + (1.0 / obsVar)), 5) # Causes zero variance which is bad
    result = 1.0 / ((1.0 / rv) + (1.0 / obsVar))
    if verboseFns: print 'svf:', rv, d, result
    return [result]

  def randPos():
    while True:
      result = (random.random() * domainSize, random.random() * domainSize)
      print 'rp:', result
      yield [result]

  def legalTest(rp):
    (x, y) = rp
    result = (0 <= x <= domainSize) and (0 <= y <= domainSize)
    if not result: print 'not legal:', rp
    return result

  # TODO - combine variance and positions

  actions = [
    Action(name='Move',
           parameters=[RPOS1, RVAR1, RPOS2, RVAR2],
           condition = And(RobotPos(RPOS1),
                           RobotVar(RVAR1),
                           Odometry(RPOS1, RVAR1, RPOS2, RVAR2)),
           effect = And(RobotPos(RPOS2),
                        RobotVar(RVAR2),
                        Not(RobotPos(RPOS1)),
                        Not(RobotVar(RVAR1)))),

    Action(name='Look',
           parameters=[RPOS1, RVAR1, BPOS, RVAR2],
           condition = And(RobotPos(RPOS1),
                           RobotVar(RVAR1),
                           Sensor(RPOS1, RVAR1, BPOS, RVAR2)),
           effect = And(RobotVar(RVAR2),
                        Not(RobotVar(RVAR1))))
  ]

  axioms = [
  ]

  # Conditional stream declarations
  cond_streams = [
     GeneratorStream(inputs = [],
                     outputs = [RPOS1],
                     conditions = [],
                     effects = [],
                     generator = randPos),

    # TODO - the number of variances grows incredibly but we just want to consider variances possible with the move
    # Each var only has one pos because moving changes
    GeneratorStream(inputs = [RPOS1, RVAR1, RPOS2],
                    outputs = [RVAR2],
                    conditions = [LegalPosVar(RPOS1, RVAR1), NearbyPos(RPOS1, RPOS2)],
                    effects = [Odometry(RPOS1, RVAR1, RPOS2, RVAR2), LegalPosVar(RPOS2, RVAR2)],
                    generator = odoVarFun),

    GeneratorStream(inputs = [RPOS1, RVAR1, BPOS],
                    outputs = [RVAR2],
                    conditions = [LegalPosVar(RPOS1, RVAR1)],
                    effects = [Sensor(RPOS1, RVAR1, BPOS, RVAR2), LegalPosVar(RPOS1, RVAR2)],
                    generator = sensorVarFun),

    TestStream(inputs = [RPOS1, RPOS2],
               conditions = [],
               effects = [NearbyPos(RPOS1, RPOS2)],
               test = lambda rp1, rp2: distance(rp1, rp2) < maxMoveDist,
               eager = True),

    TestStream(inputs = [RPOS1],
               conditions = [],
               effects = [NearGoalPos(RPOS1)],
               test = lambda rp1: distance(rp1, homePos) < goalPosEps,
               eager = True),

    TestStream(inputs = [RVAR1],
               conditions = [],
               effects = [NearGoalVar(RVAR1)],
               test = lambda a: a < goalVar,
               eager = True)

    # NOTE - the problem seems to be the fast that this is eager

  ]

  ####################

  constants = [
    BEACON(beaconPos),
    #POS((.1, .1)),
    #POS((3., .1)),
    #POS((6., .1)),
    POS(homePos),
  ]

  initial_atoms = [
    RobotPos(initRobotPos),
    RobotVar(initRobotVar),
    LegalPosVar(initRobotPos, initRobotVar), # TODO - I might as well keep track of pairs. Make this a legal on both
  ]

  goal_formula = Exists([RPOS1, RVAR1],
                             And(RobotPos(RPOS1),
                                 RobotVar(RVAR1),
                                 LegalPosVar(RPOS1, RVAR1),
                                 NearGoalPos(RPOS1),
                                 NearGoalVar(RVAR1)))

  problem = STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms,
                                 cond_streams, constants)

  return problem
def compile_problem(tamp_problem):
    O = Param(OBJECT)
    O1, O2 = Param(OBJECT), Param(OBJECT)
    L = Param(LOCATION)
    L_s, L_g = Param(LOCATION), Param(LOCATION)  # generic location
    Stove_l_s, Stove_l_g = Param(STOVE_L_S), Param(
        STOVE_L_G)  # locations for stove and sink
    Sink_l_s, Sink_l_g = Param(SINK_L_S), Param(SINK_L_G)

    actions = [
        Action(name='wash',
               parameters=[O],
               condition=And(InSink(O)),
               effect=And(Clean(O))),
        Action(name='cook',
               parameters=[O],
               condition=And(InStove(O), Clean(O)),
               effect=And(Cooked(O))),
        Action(name='pickplace',
               parameters=[O, L_s, L_g],
               condition=And(EmptySweptVolume(O, L_s, L_g), AtPose(O, L_s)),
               effect=And(AtPose(O, L_g),
                          Not(AtPose(O, L_s))))  # You should delete! 
    ]

    axioms = [
     # For all objects in the world, either object is O1 or if not, then it is not in the region
     Axiom(effect=EmptySweptVolume(O,L_s,L_g),condition=ForAll([O2],\
                                                    Or(Equal(O,O2),\
                                                    Exists([L],(And(AtPose(O2,L),OutsideRegion(O,O2,L,L_s,L_g))))))),
     Axiom(effect=InStove(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsStove(L_s,L_g)))),
     Axiom(effect=InSink(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsSink(L_s,L_g)))),
    ]

    cond_streams = [
      EasyGenStream(inputs=[O,L_s,L_g], outputs=[L], conditions=[IsSmaller(L_s,L_g)], effects=[Contained(O,L,L_s,L_g)],\
                    generator=lambda b, ls, lg: (sample_region_pose(b, ls, lg ) for _ in irange(0, INF))),
      EasyTestStream(inputs=[L_s,L_g],conditions=[],effects=[IsSmaller(L_s,L_g)],test=is_smaller,eager=EAGER_TESTS),
      EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsSink(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS),
      EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsStove(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS),
      EasyTestStream(inputs=[O,O2,L,L_s,L_g],conditions=[],effects=[OutsideRegion(O,O2,L,L_s,L_g)],test=not_in_region,eager=EAGER_TESTS),
      # OutsideRegion tests if the block at L is outside of the region (Ls,Lg)
    ]

    ####################

    # instantiate the environment region?
    constants = [
        STOVE_L_S(tamp_problem.stove_region_s),
        STOVE_L_G(tamp_problem.stove_region_g),
        SINK_L_S(tamp_problem.sink_region_s),
        SINK_L_G(tamp_problem.sink_region_g),
    ]

    # define initial state using initial poses of objects
    initial_atoms = [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ] + [IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g)] + [
        IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g)
    ]
    # static predicate but on steroid

    # define goal state as target object to be cooked - can you infer that target object is on Stove
    goal_literals = []
    #  goal_literals.append( AtPose(tamp_problem.blue_obj,1) ) #NOTE: This works; so planner knows how to clear the area
    #  goal_literals.append( AtPose(tamp_problem.target_obj,3.0) ) #NOTE: But doing this does not work
    goal_literals.append(Cooked(tamp_problem.target_obj))
    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                              cond_streams, constants), static_pred_names
def create_problem(p_init=0,
                   v_init=0,
                   a_init=0,
                   dt=.5,
                   max_a=10,
                   min_a=-10,
                   p_goal=10):
    """
  Creates a 1D car STRIPStream problem.

  https://github.com/KCL-Planning/SMTPlan/blob/master/benchmarks/car_nodrag/car_domain_nodrag.pddl

  :return: a :class:`.STRIPStreamProblem`
  """

    # Data types
    STATE, ACCEL, TIME = Type(), Type(), Type()

    # Fluent predicates
    AtState = Pred(STATE)
    AtAccel = Pred(ACCEL)
    NewTime = Pred()

    # Fluent predicates
    Running = Pred()
    Stopped = Pred()
    EngineBlown = Pred()
    TransmissionFine = Pred()
    GoalReached = Pred()

    # Static predicates
    Delta1 = Pred(ACCEL, ACCEL)  # A2 - A1 = 1
    Dynamics = Pred(STATE, ACCEL, STATE)
    Contained = Pred(STATE)

    # Free parameters
    A1, A2 = Param(ACCEL), Param(ACCEL)
    S1 = Param(STATE)
    S2 = Param(STATE)

    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        Action(name='accelerate',
               parameters=[A1, A2],
               condition=And(Running(), NewTime(), AtAccel(A1), Delta1(A1,
                                                                       A2)),
               effect=And(AtAccel(A2), Not(NewTime()), Not(AtAccel(A1)))),
        Action(name='decelerate',
               parameters=[A1, A2],
               condition=And(Running(), NewTime(), AtAccel(A1), Delta1(A2,
                                                                       A1)),
               effect=And(AtAccel(A2), Not(NewTime()), Not(AtAccel(A1)))),
        Action(name='simulate',
               parameters=[S1, A1, S2],
               condition=And(AtState(S1), AtAccel(A1), Dynamics(S1, A1, S2)),
               effect=And(NewTime(), AtState(S2), Not(AtState(S1)))),
    ]

    axioms = [
        Axiom(effect=GoalReached(),
              condition=Exists([S1], And(AtState(S1), Contained(S1)))),
    ]

    ####################

    # Conditional stream declarations
    cond_streams = [
        FunctionStream(inputs=[S1, A1],
                       outputs=[S2],
                       conditions=[],
                       effects=[Dynamics(S1, A1, S2)],
                       function=lambda (p1, v1), a1:
                       (p1 + v1 * dt + .5 * a1 * dt**2, v1 + a1 * dt)),
        GeneratorStream(inputs=[A1],
                        outputs=[A2],
                        conditions=[],
                        effects=[Delta1(A1, A2)],
                        generator=lambda a1: [a1 + 1]
                        if a1 + 1 <= max_a else []),
        GeneratorStream(inputs=[A2],
                        outputs=[A1],
                        conditions=[],
                        effects=[Delta1(A2, A1)],
                        generator=lambda a2: [a2 + 1]
                        if a2 - 1 > -min_a else []),
        TestStream(inputs=[S1],
                   conditions=[],
                   effects=[Contained(S1)],
                   test=lambda (p1, v1): p1 > p_goal,
                   eager=True),
    ]

    ####################

    constants = []

    initial_atoms = [
        AtState((p_init, v_init)),
        AtAccel(a_init),
        NewTime(),
        Running(),
    ]

    goal_literals = [
        GoalReached()
        #AtAccel(0),
    ]

    problem = STRIPStreamProblem(initial_atoms, goal_literals,
                                 actions + axioms, cond_streams, constants)

    return problem
Example #23
0
def create_problem():
  """
  Creates the 1D task and motion planning STRIPStream problem.
  This models the same problem as :module:`.run_tutorial` but does so without using any streams.

  :return: a :class:`.STRIPStreamProblem`
  """

  num_blocks = 3
  blocks = ['block%i'%i for i in range(num_blocks)]
  num_poses = num_blocks+1

  initial_config = 0 # the initial robot configuration is 0
  initial_poses = {block: i for i, block in enumerate(blocks)} # the initial pose for block i is i

  goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1

  ####################

  # Data types
  CONF, BLOCK, POSE = Type(), Type(), Type()

  # Fluent predicates
  AtConf = Pred(CONF)
  AtPose = Pred(BLOCK, POSE)
  HandEmpty = Pred()
  Holding = Pred(BLOCK)

  # Derived predicates
  Safe = Pred(BLOCK, BLOCK, POSE)

  # Static predicates
  LegalKin = Pred(POSE, CONF)
  CollisionFree = Pred(BLOCK, POSE, BLOCK, POSE)

  # Free parameters
  B1, B2 = Param(BLOCK), Param(BLOCK)
  P1, P2 = Param(POSE), Param(POSE)
  Q1, Q2 = Param(CONF), Param(CONF)

  rename_easy(locals()) # Trick to make debugging easier

  ####################

  actions = [
    Action(name='pick', parameters=[B1, P1, Q1],
      condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), LegalKin(P1, Q1)),
      effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),

    Action(name='place', parameters=[B1, P1, Q1],
      condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1),
        ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))), # TODO - convert to finite blocks case?
      effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),

    Action(name='move', parameters=[Q1, Q2],
      condition=AtConf(Q1),
      effect=And(AtConf(Q2), Not(AtConf(Q1)))),
  ]

  axioms = [
    Axiom(effect=Safe(B2, B1, P1),
          condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), # Infers B2 is at a safe pose wrt B1 at P1
  ]

  ####################

  cond_streams = []
  constants = []

  initial_atoms = [
    AtConf(initial_config),
    HandEmpty()
  ] + [
    AtPose(block, pose) for block, pose in initial_poses.iteritems()
  ] + [
    LegalKin(i, i) for i in range(num_poses)
  ] + [
    CollisionFree(b1, p1, b2, p2) for b1, p1, b2, p2 in product(blocks, range(num_poses), blocks, range(num_poses)) if p1 != p2 and b1 != b2
  ]

  goal_literals = [AtPose(block, pose) for block, pose in goal_poses.iteritems()]

  problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)

  return problem
Example #24
0
BAt = Predicate(OBJ, BELIEF)
BAtAbove = Predicate(OBJ, LOC, PROB)  # TODO - should OBJ go in here?

BSatisfies = Predicate(BELIEF, LOC, PROB)
IsLookUpdate = Predicate(BELIEF, LOC, BELIEF)
IsMoveUpdate = Predicate(LOC, BELIEF, LOC, BELIEF)

#IsBelief = Predicate(OBJ, BELIEF)

LookCost = Function('look_cost', [BELIEF, LOC])
MoveCost = Function('move_cost', [LOC, BELIEF])
InferAtCost = Function('infer_at_cost', [OBJ, LOC])

##########

O = Param(OBJ)
B, B2 = Param(BELIEF), Param(BELIEF)
L, L2 = Param(LOC), Param(LOC)
P = Param(PROB)

rename_easy(locals())

##################################################


class LookUpdate(
        CondStream
):  # NOTE - this is pretty bad because there are so many combinations of locations
    def __init__(self):
        super(LookUpdate, self).__init__(
            [B, L],
Example #25
0
def create_problem(goal, obstacles=(), distance=.25, digits=3):
    """
  Creates a Probabilistic Roadmap (PRM) motion planning problem.

  :return: a :class:`.STRIPStreamProblem`
  """

    # Data types
    POINT = Type()
    REGION = Type()

    # Fluent predicates
    AtPoint = Pred(POINT)

    # Derived predicates
    InRegion = Pred(REGION)

    # Stream predicates
    AreNearby = Pred(POINT, POINT)
    IsEdge = Pred(POINT, POINT)
    Contained = Pred(POINT, REGION)

    # Functions
    Distance = Func(POINT, POINT)

    # Free parameters
    P1, P2 = Param(POINT), Param(POINT)
    R = Param(REGION)

    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        #STRIPSAction(name='move', parameters=[P1, P2],
        #  conditions=[AtPoint(P1), IsEdge(P1, P2)],
        #  effects=[AtPoint(P2), Not(AtPoint(P1))], cost=1), # Fixed cost

        #STRIPSAction(name='move', parameters=[P1, P2],
        #  conditions=[AtPoint(P1), IsEdge(P1, P2)],
        #  effects=[AtPoint(P2), Not(AtPoint(P1)), Cost(Distance(P1, P2))]), # Cost depends on parameters
        Action(name='move',
               parameters=[P1, P2],
               condition=And(AtPoint(P1), IsEdge(P1, P2)),
               effect=And(AtPoint(P2), Not(AtPoint(P1))),
               costs=[1, Distance(P1, P2)]),
    ]

    axioms = [
        #Axiom(effect=GoalReached(), condition=Exists([P1], And(AtPos(P1), Contained(P1)))),
        STRIPSAxiom(conditions=[AtPoint(P1), Contained(P1, R)],
                    effects=[InRegion(R)])
    ]

    ####################

    # Conditional stream declarations
    cond_streams = [
        GeneratorStream(
            inputs=[],
            outputs=[P1],
            conditions=[],
            effects=[],
            generator=lambda: ((sample(digits), ) for _ in inf_sequence())
        ),  # NOTE - version that only generators collision-free points
        GeneratorStream(inputs=[R],
                        outputs=[P1],
                        conditions=[],
                        effects=[Contained(P1, R)],
                        generator=lambda r:
                        ((sample_box(r), ) for _ in inf_sequence())),

        #TestStream(inputs=[P1, P2], conditions=[], effects=[AreNearby(P1, P2), AreNearby(P2, P1)],
        #           test=lambda p1, p2: get_distance(p1, p2) <= distance, eager=True),

        #TestStream(inputs=[P1, P2], conditions=[AreNearby(P1, P2)], effects=[IsEdge(P1, P2), IsEdge(P2, P1)],
        #           test=lambda p1, p2: is_collision_free((p1, p2), obstacles), eager=True),
        TestStream(
            inputs=[P1, P2],
            conditions=[],
            effects=[IsEdge(P1, P2), IsEdge(P2, P1)],
            #test=lambda p1, p2: is_collision_free((p1, p2), obstacles), eager=True),
            test=lambda p1, p2:
            (get_distance(p1, p2) <= distance) and is_collision_free(
                (p1, p2), obstacles),
            eager=True),

        #TestStream(inputs=[P1, P2], conditions=[], effects=[IsEdge(P1, P2), IsEdge(P2, P1)],
        #           test=lambda p1, p2: get_distance(p1, p2) <= distance and is_collision_free((p1, p2), obstacles), eager=True),

        #TestStream(inputs=[P1, R], conditions=[], effects=[Contained(P1, R)],
        #           test=lambda p, r: contains(p, r), eager=True),
        CostStream(inputs=[P1, P2],
                   conditions=[],
                   effects=[Distance(P1, P2),
                            Distance(P2, P1)],
                   function=get_distance,
                   scale=100,
                   eager=True),
    ]

    ####################

    constants = []

    initial_atoms = [
        AtPoint((0, 0)),
    ]

    goal_literals = []
    if is_region(goal):
        goal_literals.append(InRegion(goal))
    else:
        goal_literals.append(AtPoint(goal))

    problem = STRIPStreamProblem(initial_atoms, goal_literals,
                                 actions + axioms, cond_streams, constants)

    return problem
IsDryer = Predicate(LOC)
IsPainter = Predicate(LOC)
IsWasher = Predicate(LOC)

UnsureLoc = Predicate(OBJ) # NOTE - can also just make these objects
UnsureState = Predicate(OBJ)
UnsureClear = Predicate(LOC)

NotAtLoc = Predicate(OBJ, LOC)

FindCost = Function('find_cost', [OBJ, LOC])
InspectLocCost = Function('inspect_loc_cost', [LOC])
InspectStateCost = Function('inspect_state_cost', [OBJ, STATE])

O, L1, L2, S = Param(OBJ), Param(LOC), Param(LOC), Param(STATE)

rename_easy(locals())

#UNKNOWN_LOC = 'unknown'

# NOTE - I could validate safe by inspecting all objects or just the goal location

# TODO - could do costs by either specifying them upfront or using STRIPStream

actions = [
  Action(name='find', parameters=[O, L1], # Policy to find the object or an inspection?
    #condition=And(At(O, UNKNOWN_LOC)),
    #effect=And(At(O, L1), Not(At(O, UNKNOWN_LOC)))),
    condition=And(UnsureLoc(O), Not(NotAtLoc(O, L1))),
    effect=And(At(O, L1), Not(Clear(L1)), Not(UnsureLoc(O)), Cost(FindCost(O, L1)))), # TODO - can even adjust the cost of these to bias search towards more likely
def create_problem(goal, obstacles=(), distance=.25, digits=3):
    """
  Creates a Probabilistic Roadmap (PRM) motion planning problem.

  :return: a :class:`.STRIPStreamProblem`
  """

    # Data types
    POINT = Type()
    REGION = Type()

    # Fluent predicates
    AtPoint = Pred(POINT)

    # Derived predicates
    InRegion = Pred(REGION)
    #IsReachable = Pred(POINT, POINT)
    IsReachable = Pred(POINT)

    # Stream predicates
    IsEdge = Pred(POINT, POINT)
    Contained = Pred(POINT, REGION)

    # Free parameters
    P1, P2 = Param(POINT), Param(POINT)
    R = Param(REGION)

    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        Action(name='move',
               parameters=[P1, P2],
               condition=And(AtPoint(P1), IsReachable(P2)),
               effect=And(AtPoint(P2), Not(AtPoint(P1))))
    ]

    axioms = [
        Axiom(effect=InRegion(R),
              condition=Exists([P1], And(AtPoint(P1), Contained(P1, R)))),
        Axiom(effect=IsReachable(P2),
              condition=Or(AtPoint(P2),
                           Exists([P1], And(IsReachable(P1), IsEdge(P1,
                                                                    P2))))),
    ]

    ####################

    def sampler():
        for _ in inf_sequence():
            yield [(sample(digits), ) for _ in range(10)]

    roadmap = set()

    def test(p1, p2):
        if not (get_distance(p1, p2) <= distance and is_collision_free(
            (p1, p2), obstacles)):
            return False
        roadmap.add((p1, p2))
        return True

    ####################

    # Conditional stream declarations
    cond_streams = [
        EasyListGenStream(
            inputs=[],
            outputs=[P1],
            conditions=[],
            effects=[],
            generator=sampler
        ),  # NOTE - version that only generators collision-free points
        GeneratorStream(inputs=[R],
                        outputs=[P1],
                        conditions=[],
                        effects=[Contained(P1, R)],
                        generator=lambda r:
                        (sample_box(r) for _ in inf_sequence())),
        TestStream(inputs=[P1, P2],
                   conditions=[],
                   effects=[IsEdge(P1, P2), IsEdge(P2, P1)],
                   test=test,
                   eager=True),
    ]

    ####################

    constants = []

    initial_atoms = [
        AtPoint((0, 0)),
    ]

    goal_literals = []
    if is_region(goal):
        goal_literals.append(InRegion(goal))
    else:
        goal_literals.append(AtPoint(goal))

    problem = STRIPStreamProblem(initial_atoms, goal_literals,
                                 actions + axioms, cond_streams, constants)

    return problem, roadmap
def create_problem(p_init=0, v_init=0, a_init=0,
                   dt=.5, max_a=10, min_a=-10, p_goal=10):
  """
  Creates a 1D car STRIPStream problem.

  https://github.com/KCL-Planning/SMTPlan/blob/master/benchmarks/car_nodrag/car_domain_nodrag.pddl

  :return: a :class:`.STRIPStreamProblem`
  """

  # Data types
  POS, VEL, ACCEL, TIME = Type(), Type(), Type(), Type()

  # Fluent predicates
  AtPos = Pred(POS)
  AtVel = Pred(VEL)
  AtAccel = Pred(ACCEL)
  NewTime = Pred()

  # Fluent predicates
  Running = Pred()
  Stopped = Pred()
  EngineBlown = Pred()
  TransmissionFine = Pred()
  GoalReached = Pred()

  # Static predicates
  Delta1 = Pred(ACCEL, ACCEL) # A2 - A1 = 1
  Dynamics = Pred(POS, VEL, ACCEL, POS, VEL)
  Contained = Pred(POS)

  # Free parameters
  A1, A2 = Param(ACCEL), Param(ACCEL)
  P1, V1 = Param(POS), Param(VEL)
  P2, V2 = Param(POS), Param(VEL)

  rename_easy(locals()) # Trick to make debugging easier

  ####################

  actions = [
    #Action(name='accelerate', parameters=[A1, A2],
    #  #condition=And(Running(), NewTime(), AtAccel(A1), Delta1(A1, A2)),
    #  condition=And(NewTime(), AtAccel(A1), Delta1(A1, A2)),
    #  effect=And(AtAccel(A2), Not(NewTime()), Not(AtAccel(A1))), cost=5),

    STRIPSAction(name='accelerate', parameters=[A1, A2],
      conditions=[NewTime(), AtAccel(A1), Delta1(A1, A2)],
      effects=[AtAccel(A2), Not(NewTime()), Not(AtAccel(A1))], cost=5),

    #Action(name='decelerate', parameters=[A1, A2],
    #  condition=And(Running(), NewTime(), AtAccel(A1), Delta1(A2, A1)),
    #  condition=And(NewTime(), AtAccel(A1), Delta1(A2, A1)),
    #  effect=And(AtAccel(A2), Not(NewTime()), Not(AtAccel(A1)))),

    STRIPSAction(name='decelerate', parameters=[A1, A2],
      conditions=[NewTime(), AtAccel(A1), Delta1(A2, A1)],
      effects=[AtAccel(A2), Not(NewTime()), Not(AtAccel(A1))]),

    #Action(name='simulate', parameters=[P1, V1, A1, P2, V2],
    #  condition=And(AtPos(P1), AtVel(V1), AtAccel(A1), Dynamics(P1, V1, A1, P2, V2)),
    #  effect=And(NewTime(), AtPos(P2), AtVel(V2), Not(AtPos(P1)), Not(AtVel(V1))), cost=1),

    STRIPSAction(name='simulate', parameters=[P1, V1, A1, P2, V2],
      conditions=[AtPos(P1), AtVel(V1), AtAccel(A1), Dynamics(P1, V1, A1, P2, V2)],
      effects=[NewTime(), AtPos(P2), AtVel(V2), Not(AtPos(P1)), Not(AtVel(V1))], cost=1),

    #STRIPSAction(name='goal', parameters=[P1],
    #  conditions=[AtPos(P1), Contained(P1)],
    #  effects=[GoalReached()], cost=None),
  ]

  axioms = [
    #Axiom(effect=GoalReached(), condition=Exists([P1], And(AtPos(P1), Contained(P1)))),
    STRIPSAxiom(conditions=[AtPos(P1), Contained(P1)], effects=[GoalReached()])
  ]

  ####################

  # Conditional stream declarations
  cond_streams = [
    FunctionStream(inputs=[P1, V1, A1], outputs=[P2, V2], conditions=[], effects=[Dynamics(P1, V1, A1, P2, V2)],
                    function=lambda p1, v1, a1: (p1 + v1*dt + .5*a1*dt**2, v1 + a1*dt)),

    FunctionStream(inputs=[A1], outputs=[A2], conditions=[], effects=[Delta1(A1, A2)],
                    function=lambda a1: (a1+1,) if a1+1 <= max_a else None),
    #GeneratorStream(inputs=[A1], outputs=[A2], conditions=[], effects=[Delta1(A1, A2)],
    #                generator=lambda a1: [a1+1] if a1+1 <= max_a else []),


    FunctionStream(inputs=[A2], outputs=[A1], conditions=[], effects=[Delta1(A2, A1)],
                    function=lambda a2: (a2+1,) if a2-1 >= min_a else None),
    #GeneratorStream(inputs=[A2], outputs=[A1], conditions=[], effects=[Delta1(A2, A1)],
    #                generator=lambda a2: [a2+1] if a2-1 >- min_a else []),

    TestStream(inputs=[P1], conditions=[], effects=[Contained(P1)],
               test=lambda p1: p1 >= p_goal, eager=True),
  ]

  ####################

  constants = []

  initial_atoms = [
    AtPos(p_init),
    AtVel(v_init),
    AtAccel(a_init),
    NewTime(),
    #Running(),
  ]

  goal_literals = [
    GoalReached(),
    AtAccel(0),
  ]

  problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)

  return problem
Example #29
0
def compile_problem(tamp_problem):
    """
    Constructs a STRIPStream problem for the countable TMP problem.

    :param tamp_problem: a :class:`.TMPProblem`
    :return: a :class:`.STRIPStreamProblem`
    """

    B1, B2 = Param(BLOCK), Param(BLOCK)
    P1, P2 = Param(POSE), Param(POSE)
    Q1, Q2 = Param(CONF), Param(CONF)

    actions = [
        Action(name='pick',
               parameters=[B1, P1, Q1],
               condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1),
                             LegalKin(P1, Q1)),
               effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),
        Action(name='place',
               parameters=[B1, P1, Q1],
               condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1),
                             ForAll([B2], Or(Equal(B1, B2), Safe(B2, P1)))),
               effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),
        Action(name='move',
               parameters=[Q1, Q2],
               condition=AtConf(Q1),
               effect=And(AtConf(Q2), Not(AtConf(Q1)))),
    ]

    axioms = [
        Axiom(effect=Safe(B2, P1),
              condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(P1,
                                                                       P2)))),
    ]

    cond_streams = [
        EasyGenStream(inputs=[],
                      outputs=[P1],
                      conditions=[],
                      effects=[],
                      generator=lambda: irange(0, NUM_POSES)),
        EasyGenStream(inputs=[P1],
                      outputs=[Q1],
                      conditions=[],
                      effects=[LegalKin(P1, Q1)],
                      generator=lambda p: iter([p])),
        EasyTestStream(inputs=[P1, P2],
                       conditions=[],
                       effects=[CollisionFree(P1, P2)],
                       test=lambda p1, p2: p1 != p2,
                       eager=EAGER_TESTS),
    ]

    constants = []

    initial_atoms = [
        AtConf(tamp_problem.initial_config),
    ] + [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ]
    if tamp_problem.initial_holding is False:
        initial_atoms.append(HandEmpty())
    else:
        initial_atoms.append(Holding(tamp_problem.initial_holding, BLOCK))

    goal_literals = []
    if tamp_problem.goal_holding is False:
        goal_literals.append(HandEmpty())
    elif tamp_problem.goal_holding is not None:
        goal_literals.append(Holding(tamp_problem.goal_holding))
    for block, goal in tamp_problem.goal_poses.iteritems():
        goal_literals.append(AtPose(block, goal))

    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                              cond_streams, constants)
Example #30
0
def create_problem(n=50):
    """
  Creates the 1D task and motion planning STRIPStream problem.

  :return: a :class:`.STRIPStreamProblem`
  """

    blocks = ['block%i' % i for i in xrange(n)]
    num_poses = pow(10, 10)

    initial_config = 0  # the initial robot configuration is 0
    initial_poses = {block: i
                     for i, block in enumerate(blocks)
                     }  # the initial pose for block i is i

    goal_poses = {blocks[1]: 2}  # the goal pose for block i is i+1

    ####################

    # TODO: the last version of this would be to make a separate pose type per object (I think I did do this)

    CONF = Type()
    HandEmpty = Pred()
    AtConf = Pred(CONF)
    Q1, Q2 = Param(CONF), Param(CONF)

    #POSE = Type()
    #Kin = Pred(POSE, CONF)
    #Collision = Pred(POSE, POSE)
    #P1, P2 = Param(POSE), Param(POSE)

    #rename_easy(locals()) # Trick to make debugging easier

    actions = [
        Action(name='move',
               parameters=[Q1, Q2],
               condition=AtConf(Q1),
               effect=And(AtConf(Q2), Not(AtConf(Q1)))),
    ]
    axioms = []

    cond_streams = [
        #GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[Kin(P1, Q1)],
        #                generator=lambda p: [(p,)]), # Inverse kinematics

        #TestStream(inputs=[P1, P2], conditions=[], effects=[Collision(P1, P2)],
        #           test=lambda p1, p2: p1 == p2, eager=True),
    ]

    initial_atoms = [
        AtConf(initial_config),
        HandEmpty(),
    ]
    goal_literals = []

    ####################

    # TODO: I think thinking invariants gets harder with many predicates. Can cap this time I believe though
    #153 initial candidates
    #Finding invariants: [2.250s CPU, 2.263s wall - clock]

    for b in blocks:
        # TODO: can toggle using individual pose types
        POSE = Type()
        Kin = Pred(POSE, CONF)
        P1 = Param(POSE)

        AtPose = Pred(POSE)
        IsPose = Pred(POSE)
        Holding = Pred()
        #Unsafe = Pred(BLOCK, POSE)

        initial_atoms += [
            AtPose(initial_poses[b]),
            IsPose(initial_poses[b]),
        ]
        if b in goal_poses:
            goal_literals += [AtPose(goal_poses[b])]
            initial_atoms += [IsPose(goal_poses[b])]

        axioms += [
            # TODO: to do this, need to make b a parameter and set it using inequality
            #Axiom(effect=Unsafe(b, P1),
            #            condition=Exists([P2], And(AtPose(b, P2), IsPose(b, P2), Collision(P1, P2)))),
        ]
        actions += [
            Action(name='pick-{}'.format(b),
                   parameters=[P1, Q1],
                   condition=And(AtPose(P1), HandEmpty(), AtConf(Q1),
                                 IsPose(P1), Kin(P1, Q1)),
                   effect=And(Holding(), Not(AtPose(P1)), Not(HandEmpty()))),
            Action(
                name='place-{}'.format(b),
                parameters=[P1, Q1],
                condition=And(Holding(), AtConf(Q1), IsPose(P1), Kin(P1, Q1)),
                #*[Safe(b2, P1) for b2 in blocks if b2 != b]),
                #*[Not(Unsafe(b2, P1)) for b2 in blocks if b2 != b]),
                effect=And(AtPose(P1), HandEmpty(), Not(Holding()))),
        ]
        cond_streams += [
            GeneratorStream(inputs=[],
                            outputs=[P1],
                            conditions=[],
                            effects=[IsPose(P1)],
                            generator=lambda:
                            ((p, ) for p in xrange(n, num_poses))),
            GeneratorStream(inputs=[P1],
                            outputs=[Q1],
                            conditions=[],
                            effects=[Kin(P1, Q1)],
                            generator=lambda p: [(p, )]),  # Inverse kinematics
        ]

    problem = STRIPStreamProblem(initial_atoms, goal_literals,
                                 actions + axioms, cond_streams, [])

    return problem