def create_problem(): """ Creates a blocksworld STRIPStream problem. :return: a :class:`.STRIPStreamProblem` """ # Data types BLOCK = Type() # Fluent predicates Clear = Pred(BLOCK) OnTable = Pred(BLOCK) ArmEmpty = Pred() Holding = Pred(BLOCK) On = Pred(BLOCK, BLOCK) # Free parameters B1, B2 = Param(BLOCK), Param(BLOCK) rename_easy(locals()) actions = [ Action(name='pickup', parameters=[B1], condition=And(Clear(B1), OnTable(B1), ArmEmpty()), effect=And(Holding(B1), Not(Clear(B1)), Not(OnTable(B1)), Not(ArmEmpty()))), Action(name='putdown', parameters=[B1], condition=Holding(B1), effect=And(Clear(B1), OnTable(B1), ArmEmpty(), Not(Holding(B1)))), Action(name='stack', parameters=[B1, B2], condition=And(Clear(B2), Holding(B1)), effect=And(Clear(B1), On(B1, B2), ArmEmpty(), Not(Clear(B2)), Not(Holding(B1)))), Action(name='unstack', parameters=[B1, B2], condition=And(Clear(B1), On(B1, B2), ArmEmpty()), effect=And(Clear(B2), Holding(B1), Not(Clear(B1)), Not(On(B1, B2)), Not(ArmEmpty()))), ] axioms = [] cond_streams = [] constants = [] initial_atoms = [ OnTable('A'), OnTable('B'), OnTable('C'), Clear('A'), Clear('B'), Clear('C'), ArmEmpty(), ] goal_literals = [On('A', 'B'), On('B', 'C')] return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)
def create_problem(time_step=.5, fuel_rate=5, start_fuel=10, goal_p=10): """ Creates the Tsiolkovsky rocket problem. :return: a :class:`.STRIPStreamProblem` """ # Data types STATE, RATE, MASS, TIME = Type(), Type(), Type(), Type() HEIGHT = Type() # Fluent predicates AtState = Pred(STATE) # Derived predicates Above = Pred(HEIGHT) # Static predicates IsBurst = Pred(STATE, RATE, TIME, STATE) IsAbove = Pred(STATE, HEIGHT) # Free parameters X1, X2 = Param(STATE), Param(STATE) Q, T = Param(RATE), Param(TIME) H = Param(HEIGHT) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ Action(name='burst', parameters=[X1, Q, T, X2], condition=And(AtState(X1), IsBurst(X1, Q, T, X2)), effect=And(AtState(X2), Not(AtState(X1)))), ] axioms = [ Axiom(effect=Above(H), condition=Exists([X1], And(AtState(X1), IsAbove(X1, H)))), ] #################### # Conditional stream declarations cond_streams = [ GeneratorStream(inputs=[X1, Q, T], outputs=[X2], conditions=[], effects=[IsBurst(X1, Q, T, X2)], generator=forward_burst), TestStream(inputs=[X1, H], conditions=[], effects=[IsAbove(X1, H)], test=lambda (p, v, m), h: p >= h, eager=True), ]
def __init__(self): obj, p, prior = Param(OBJ), Param(POSE), Param(BELIEF) post = 1 super(PerfectLook, self).__init__( self.__class__.__name__, [obj, p, prior], And( #At(obj, p), BAt(obj, p, prior)), And(BAt(obj, p, 1), Not(BAt(obj, p, prior))))
def __init__(self, p_obs_t): obj, p, prior, post = Param(OBJ), Param(POSE), Param(BELIEF), Param( BELIEF) super(BackwardLook, self).__init__( self.__class__.__name__, [obj, p, prior, post], And( #At(obj, p), BAt(obj, p, prior), #BAtAbove(obj, p, prior), # Problem where we want to delete the old belief, but we need to include the reference belief IsPossible(prior, post)), And(BAt(obj, p, post), Not(BAt(obj, p, prior))))
def __init__(self, min_safe_p=.95): obj, p1, p2, b = Param(OBJ), Param(POSE), Param(POSE), Param(BELIEF) Action.__init__( self, self.__class__.__name__, [obj, p1, p2, b], And( #At(obj, p1), BAt(obj, p1, b), BAtAbove(obj, p1, min_safe_p)), And( #At(obj, p2), BAt(obj, p2, b), #Not(At(obj, p1)), Not(BAt(obj, p1, b))), cost=1)
def __init__(self, min_safe_p=.95): obj, d1, d2 = Param(OBJ), Param(DIST), Param(DIST) Action.__init__( self, self.__class__.__name__, [obj, d], And( BClean(obj, d1), IsClean(d1, d2), #BAtAbove(obj, p1, min_safe_p) ), And( BClean(obj, d2), #Not(At(obj, p1)), Not(BClean(obj, d1))), cost=1)
def __init__(self, p_obs_t, p_obs_f=None, log_cost=False): #self.p_obs_t = p_obs_t #if p_obs_f is None: self.p_obs_f = 1 - p_obs_t #self.log_cost = log_cost cost = prob_cost( p_obs_t, log_cost=log_cost) # Conditions on successful observation cost = None obj, p, prior, post = Param(OBJ), Param(POSE), Param(BELIEF), Param( BELIEF) super(Look, self).__init__( self.__class__.__name__, [obj, p, prior, post], And( #At(obj, p), BAt(obj, p, prior), IsUpdate(prior, post)), And(BAt(obj, p, post), Not(BAt(obj, p, prior))), cost)
HoldingMotion = Pred(CONF, CONF, TRAJ) GraspMotion = Pred(CYL, POINT, GRASP, CONF, TRAJ) #GraspMotion = Pred(OBJ, POSE, GRASP, CONF, TRAJ, TRAJ) PushMotion = Pred(CYL, POINT, POINT, CONF, TRAJ) # Static collision CFreePose = Pred(POINT, POINT) CFreeTraj = Pred(TRAJ, POINT) IsPushable = Pred(CYL) IsPose = Pred(CYL, POINT) IsGrasp = Pred(CYL, GRASP) Stable = Pred(POINT, SURFACE) IsEdge = Pred(POINT) O, P, G = Param(CYL), Param(POINT), Param(GRASP) O2, P2 = Param(CYL), Param(POINT) Q, Q2 = Param(CONF), Param(CONF) T = Param(TRAJ) T2 = Param(TRAJ) S = Param(SURFACE) rename_easy(locals()) #################### def edge_generator_fn(bodies, surfaces): def pose_generator(obj, surface): surface_pose, convex_hull = surfaces[surface].get_surface() world_from_surface = trans_from_pose(surface_pose)
def solve_incrementally(): O = Param(OBJECT) O1, O2 = Param(OBJECT), Param(OBJECT) L = Param(LOCATION) L_s, L_g = Param(LOCATION), Param(LOCATION) # generic location Stove_l_s, Stove_l_g = Param(STOVE_L_S), Param( STOVE_L_G) # locations for stove and sink Sink_l_s, Sink_l_g = Param(SINK_L_S), Param(SINK_L_G) actions = [ Action(name='wash', parameters=[O], condition=And(InSink(O)), effect=And(Clean(O))), Action(name='cook', parameters=[O], condition=And(InStove(O), Clean(O)), effect=And(Cooked(O))), Action(name='pickplace', parameters=[O, L_s, L_g], condition=And(EmptySweptVolume(O, L_s, L_g), AtPose(O, L_s)), effect=And(AtPose(O, L_g), Not(AtPose(O, L_s)))) # You should delete! ] axioms = [ # For all objects in the world, either object is O1 or if not, then it is not in the region Axiom(effect=EmptySweptVolume(O,L_s,L_g),condition=ForAll([O2],\ Or(Equal(O,O2),\ Exists([L],(And(AtPose(O2,L),OutsideRegion(O,O2,L,L_s,L_g))))))), # Object is in the stove if it is at pose L for which Ls and Lg define stove Axiom(effect=InStove(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsStove(L_s,L_g)))), Axiom(effect=InSink(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsSink(L_s,L_g)))), ] cond_streams = [ EasyGenStream(inputs=[O,L_s,L_g], outputs=[L], conditions=[IsSmaller(L_s,L_g)], effects=[Contained(O,L,L_s,L_g)],\ generator=lambda b, ls, lg: (sample_region_pose(b, ls, lg ) for _ in irange(0, INF))), EasyTestStream(inputs=[L_s,L_g],conditions=[],effects=[IsSmaller(L_s,L_g)],test=is_smaller,eager=EAGER_TESTS), # Generate static predicates that object is contained in sink for which Ls and Lg define the sink. If L was not continuous value, # then we would define this in the intial condition and would not be changed by any of the actions (hence static predicate) EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsSink(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS), EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsStove(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS), # OutsideRegion tests if O2 is is outside of the region (Ls,Lg) EasyTestStream(inputs=[O,O2,L,L_s,L_g],conditions=[],effects=[OutsideRegion(O,O2,L,L_s,L_g)],test=not_in_region,eager=EAGER_TESTS), ] #################### tamp_problem = sample_one_d_kitchen_problem() # instantiate the environment region? constants = [ STOVE_L_S(tamp_problem.stove_region_s), STOVE_L_G(tamp_problem.stove_region_g), SINK_L_S(tamp_problem.sink_region_s), SINK_L_G(tamp_problem.sink_region_g), ] # define initial state using initial poses of objects initial_atoms = [ AtPose(block, pose) for block, pose in tamp_problem.initial_poses.iteritems() ] + [IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g)] + [ IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g) ] # initial_atoms = static predicates, but on steroid goal_literals = [] subgoal_list = [ InSink(tamp_problem.target_obj), \ InStove(tamp_problem.target_obj), Cooked(tamp_problem.target_obj) ] for i in range(len(subgoal_list)): goal_literals = [subgoal_list[0]] stream_problem = STRIPStreamProblem(initial_atoms, goal_literals, \ actions+axioms, cond_streams, constants) search = get_fast_downward('eager') plan, universe = incremental_planner(stream_problem, search=search,\ frequency=1, verbose=True, max_time=200) plan = convert_plan(plan) # move the object to the new locations; todo: add new predicates if len(plan) > 0: # if no action needed, keep last initial atoms initial_atoms = [] for action in plan: action_name = action[0].name action_args = action[1] if action_name == 'pickplace': O = action_args[0].name pick_l = action_args[1] place_l = action_args[2] block = [b for b in tamp_problem.blocks if b.name == O][0] initial_atoms += [AtPose(block, place_l)] if len(initial_atoms) == 1: block = [b for b in tamp_problem.blocks if b.name != O][0] initial_atoms += [AtPose(block, tamp_problem.initial_poses[block])] initial_atoms += [ IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g) ] initial_atoms += [ IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g) ]
def create_problem(dt, GoalTest, ClearTest, CalcDiffSystem, InitialState): """ Creates a generic non-holonomic motion planning problem :return: a :class:`.STRIPStreamProblem` """ # Data types X, DX, U = Type(), Type(), Type() # Fluent predicates AtX = Pred(X) # Fluent predicates GoalReached = Pred() # Static predicates ComputeDX = Pred(X, U, DX) Dynamics = Pred(X, DX, X) AtGoal = Pred(X) Clear = Pred(X, X) # Free parameters X1, X2 = Param(X), Param(X) DX1 = Param(DX) U1 = Param(U) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ Action(name='simulate', parameters=[X1, U1, X2, DX1], condition=And(AtX(X1), ComputeDX(X1, U1, DX1), Dynamics(X1, DX1, X2), Clear(X1, X2)), effect=And(Not(AtX(X1)), AtX(X2))), ] axioms = [ Axiom(effect=GoalReached(), condition=Exists([X1], AtGoal(X1))), ] #################### # Conditional stream declarations def ComputeDXCalculator(X1F, DX1F): X2F = X1F[:] for i in range(len(X2F)): X2F[i] = X1F[i] + dt * DX1F[i] return X2F cond_streams = [ FunctionStream(inputs=[X1, DX1], outputs=[X2], conditions=[], effects=[Dynamics(X1, DX1, X2)], function=ComputeDXCalculator), FunctionStream(inputs=[X1, U1], outputs=[DX1], conditions=[], effects=[ComputeDX(X1, U1, DX1)], function=CalcDiffSystem), TestStream(inputs=[X1, X2], conditions=[], effects=[Clear(X1, X2)], test=ClearTest, eager=True), TestStream(inputs=[X1], conditions=[], effects=[AtGoal(X1)], test=GoalTest, eager=True), ] #################### constants = [ # TODO - need to declare control inputs (or make a stream for them) ] initial_atoms = [ AtX(InitialState), ] goal_literals = [GoalReached()] problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def create_problem(initRobotPos = (0.5, 0.5), initRobotVar = 0.01, maxMoveDist = 5.0, beaconPos = (1, 1), homePos = (0, 0), goalPosEps = 0.1, goalVar = 0.1, odoErrorRate = 0.1, obsVarPerDistFromSensor = 10.0, minObsVar = 0.001, domainSize = 20, verboseFns = True): """ :return: a :class:`.STRIPStreamProblem` """ # Data types POS = Type() # 2D position VAR = Type() # 2D variance DIST = Type() # positive scalar # Fluent predicates RobotPos = Pred(POS) RobotVar = Pred(VAR) # Derived predicates KnowYouAreHome = Pred() # Static predicates DistBetween = Pred(POS, POS, DIST) # Distance between two positions (function) LessThanV = Pred(VAR, VAR) # Less than, on distances LessThanD = Pred(DIST, DIST) # Less than, on distances OdometryVar = Pred(VAR, VAR, DIST) # How does odometry variance increase? SensorVar = Pred(VAR, VAR, DIST) # How does an observation decrease variance? LegalPos = Pred(POS) # Any legal robot pos # Free parameters RPOS1, RPOS2, RVAR1, RVAR2 = Param(POS), Param(POS), Param(VAR), Param(VAR) DIST1, DIST2 = Param(DIST), Param(DIST) def odoVarFun(rv, d): odoVar = (d * odoErrorRate)**2 result = rv + odoVar if verboseFns: print 'ovf:', rv, d, result return [result] def sensorVarFun(rv, d): obsVar = max(d / obsVarPerDistFromSensor, minObsVar) result = 1.0 / ((1.0 / rv) + (1.0 / obsVar)) if verboseFns: print 'svf:', rv, d, result return [result] def randPos(): while True: result = (random.random() * domainSize, random.random() * domainSize) print 'rp:', result yield [result] def legalTest(rp): (x, y) = rp result = (0 <= x <= domainSize) and (0 <= y <= domainSize) if not result: print 'not legal:', rp return result actions = [ Action(name='Move', parameters=[RPOS1, RPOS2, RVAR1, RVAR2, DIST1], condition = And(RobotPos(RPOS1), RobotVar(RVAR1), LegalPos(RPOS2), # Generate an intermediate pos DistBetween(RPOS1, RPOS2, DIST1), LessThanD(DIST1, maxMoveDist), OdometryVar(RVAR1, RVAR2, DIST1)), effect = And(RobotPos(RPOS2), RobotVar(RVAR2), Not(RobotPos(RPOS1)), Not(RobotVar(RVAR1)))), # Action(name='Look', # parameters=[RPOS1, RVAR1, RVAR2, DIST1], # condition = And(RobotPos(RPOS1), # RobotVar(RVAR1), # DistBetween(RPOS1, beaconPos, DIST1), # SensorVar(RVAR1, RVAR2, DIST1)), # effect = And(RobotVar(RVAR2), # Not(RobotVar(RVAR1)))) ] axioms = [ Axiom(effect = KnowYouAreHome(), condition = Exists([RPOS1, RVAR1, DIST1], And(RobotPos(RPOS1), RobotVar(RVAR1), DistBetween(RPOS1, homePos, DIST1), LessThanD(DIST1, goalPosEps), LessThanV(RVAR1, goalVar)))) ] # Conditional stream declarations cond_streams = [ TestStream(inputs = [RPOS1], conditions = [], effects = [LegalPos(RPOS1)], test = legalTest, eager = True), GeneratorStream(inputs = [], outputs = [RPOS1], conditions = [], effects = [LegalPos(RPOS1)], generator = randPos), GeneratorStream(inputs = [RPOS1, RPOS2], outputs = [DIST1], conditions = [], effects = [DistBetween(RPOS1, RPOS2, DIST1)], generator = lambda rp1, rp2: [distance(rp1, rp2)]), GeneratorStream(inputs = [RVAR1, DIST1], outputs = [RVAR2], conditions = [], effects = [OdometryVar(RVAR1, RVAR2, DIST1)], generator = odoVarFun), # GeneratorStream(inputs = [RVAR1, DIST1], # outputs = [RVAR2], # conditions = [], # effects = [SensorVar(RVAR1, RVAR2, DIST1)], # generator = sensorVarFun), TestStream(inputs = [DIST1, DIST2], conditions = [], effects = [LessThanD(DIST1, DIST2)], test = lt, eager = True), TestStream(inputs = [RVAR1, RVAR2], conditions = [], effects = [LessThanV(RVAR1, RVAR2)], test = lt, eager = True) ] #################### constants = [ ] initial_atoms = [ RobotPos(initRobotPos), RobotVar(initRobotVar), LegalPos(homePos), LegalPos((.1, .1)), LegalPos((3.0, .1)), LegalPos((6.0, .1)) ] goal_literals = [ KnowYouAreHome() ] problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def create_problem(): """ Creates the 1D task and motion planning STRIPStream problem. :return: a :class:`.STRIPStreamProblem` """ blocks = ['block%i'%i for i in range(3)] num_poses = pow(10, 10) initial_config = 0 # the initial robot configuration is 0 initial_poses = {block: i for i, block in enumerate(blocks)} # the initial pose for block i is i goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1 #################### VALUE = Type() # Fluent predicates AtConf = Pred(VALUE) AtPose = Pred(VALUE, VALUE) HandEmpty = Pred() Holding = Pred(VALUE) # Derived predicates Safe = Pred(VALUE, VALUE, VALUE) # Static predicates IsBlock = Pred(VALUE) IsPose = Pred(VALUE) IsConf = Pred(VALUE) LegalKin = Pred(VALUE, VALUE) CollisionFree = Pred(VALUE, VALUE, VALUE, VALUE) # Free parameters B1, B2 = Param(VALUE), Param(VALUE) P1, P2 = Param(VALUE), Param(VALUE) Q1, Q2 = Param(VALUE), Param(VALUE) rename_easy(locals()) # Trick to make debugging easier #################### # NOTE - it would be easier to just update an in hand pose actions = [ STRIPSAction(name='pick', parameters=[B1, P1, Q1], conditions=[IsBlock(B1), IsPose(P1), IsConf(Q1), LegalKin(P1, Q1), AtPose(B1, P1), HandEmpty(), AtConf(Q1)], effects=[Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty())]), STRIPSAction(name='place', parameters=[B1, P1, Q1], conditions=[IsBlock(B1), IsPose(P1), IsConf(Q1), LegalKin(P1, Q1), Holding(B1), AtConf(Q1)] + [Safe(b2, B1, P1) for b2 in blocks], effects=[AtPose(B1, P1), HandEmpty(), Not(Holding(B1))]), STRIPSAction(name='move', parameters=[Q1, Q2], conditions=[IsConf(Q1), IsConf(Q2), AtConf(Q1)], effects=[AtConf(Q2), Not(AtConf(Q1))]), ] axioms = [ # TODO - need to combine axioms #Axiom(effect=Safe(B2, B1, P1), # condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), # Infers B2 is at a safe pose wrt B1 at P1 ] #################### # Conditional stream declarations cond_streams = [ GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[IsPose(P1)], generator=lambda: xrange(num_poses)), # Enumerating all the poses GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[IsPose(P1)], effects=[IsConf(Q1), LegalKin(P1, Q1)], generator=lambda p: [p]), # Inverse kinematics TestStream(inputs=[B1, P1, B2, P2], conditions=[IsBlock(B1), IsPose(P1), IsBlock(B2), IsPose(P2)], effects=[CollisionFree(B1, P1, B2, P2)], test=lambda b1, p1, b2, p2: p1 != p2, eager=True), # Collision checking ] #################### constants = [] initial_atoms = [ IsConf(initial_config), AtConf(initial_config), HandEmpty() ] for block, pose in initial_poses.iteritems(): initial_atoms += [ IsBlock(block), IsPose(pose), AtPose(block, pose), ] goal_literals = [] for block, pose in goal_poses.iteritems(): initial_atoms += [ IsBlock(block), IsPose(pose), ] goal_literals.append(AtPose(block, pose)) problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
from toyTest import glob, makeOperators, Bd, ObjState, ObjLoc OBJ, LOC = Type(), Type() At = Predicate(OBJ, LOC) Clear = Predicate(LOC) Clean = Predicate(OBJ) WetPaint = Predicate(OBJ) DryPaint = Predicate(OBJ) IsDryer = Predicate(LOC) IsPainter = Predicate(LOC) IsWasher = Predicate(LOC) O, L1, L2 = Param(OBJ), Param(LOC), Param(LOC) actions = [ Action(name='transport', parameters=[O, L1, L2], condition=And(At(O, L1), Clear(L2)), effect=And(At(O, L2), Clear(L1), Not(At(O, L1)), Not( Clear(L2)))), # NOTE - Leslie and Tomas call this Move Action( name='wash', parameters=[O, L1], condition=And(At(O, L1), IsWasher(L1)), #effect=And(Clean(O))) effect=And(Clean(O), Not(WetPaint(O)), Not(DryPaint(O)))), Action( name='paint',
def create_problem(n=50): """ Creates the 1D task and motion planning STRIPStream problem. :return: a :class:`.STRIPStreamProblem` """ blocks = ['block%i' % i for i in xrange(n)] num_poses = pow(10, 10) initial_config = 0 # the initial robot configuration is 0 initial_poses = {block: i for i, block in enumerate(blocks) } # the initial pose for block i is i #goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1 goal_poses = {blocks[0]: 1} # the goal pose for block i is i+1 #goal_poses = {blocks[0]: 100} # the goal pose for block i is i+1 #################### # Data types CONF, BLOCK, POSE = Type(), Type(), Type() # Fluent predicates AtConf = Pred(CONF) AtPose = Pred(BLOCK, POSE) IsPose = Pred(BLOCK, POSE) HandEmpty = Pred() Holding = Pred(BLOCK) Moved = Pred() # Prevents double movements # Derived predicates Safe = Pred(BLOCK, POSE) #Unsafe = Pred(BLOCK, BLOCK, POSE) Unsafe = Pred(BLOCK, POSE) #Unsafe = Pred(POSE) # Static predicates Kin = Pred(POSE, CONF) CFree = Pred(POSE, POSE) Collision = Pred(POSE, POSE) # Free parameters B1, B2 = Param(BLOCK), Param(BLOCK) P1, P2 = Param(POSE), Param(POSE) Q1, Q2 = Param(CONF), Param(CONF) rename_easy(locals()) # Trick to make debugging easier #################### # TODO: drp_pddl_adl/domains/tmp.py has conditional effects When(Colliding(pose, trajectory), Not(Safe(obj, trajectory)))) # TODO: maybe this would be okay if the effects really are sparse (i.e. not many collide) # http://www.fast-downward.org/TranslatorOutputFormat # FastDownward will always make an axiom for the quantified expressions # I don't really understand why FastDownward does this... It doesn't seem to help # It creates n "large" axioms that have n-1 conditions (removing the Equal) # universal conditions: Universal conditions in preconditions, effect conditions and the goal are internally compiled into axioms by the planner. # Therefore, heuristics that do not support axioms (see previous point) do not support universal conditions either. # http://www.fast-downward.org/PddlSupport # TODO: the compilation process actually seems to still make positive axioms for things. # The default value is unsafe and it creates positive axioms... # A heuristic cost of 4 is because it does actually move something out the way # drp_pddl/domains/tmp_separate.py:class CollisionAxiom(Operator, Refinable, Axiom): # TODO: maybe I didn't actually try negative axioms like I thought? # See also 8/24/16 and 8/26/16 notes # Maybe the translator changed sometime making it actually invert these kinds of axioms # TODO: maybe this would be better if I did a non-boolean version that declared success if at any pose other than this one # It looks like temporal fast downward inverts axioms as well actions = [ Action( name='pick', parameters=[B1, P1, Q1], condition=And(AtPose(B1, P1), HandEmpty(), IsPose(B1, P1), Kin(P1, Q1)), # AtConf(Q1), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()), Not(Moved()))), Action( name='place', parameters=[B1, P1, Q1], condition=And( Holding(B1), IsPose(B1, P1), Kin(P1, Q1), # AtConf(Q1), #*[Safe(b, P1) for b in blocks]), *[Not(Unsafe(b, P1)) for b in blocks]), #*[Not(Unsafe(b, B1, P1)) for b in blocks]), #*[Or(Equal(b, B1), Not(Unsafe(b, B1, P1))) for b in blocks]), #ForAll([B2], Or(Equal(B1, B2), Not(Unsafe(B2, P1))))), #ForAll([B2], Or(Equal(B1, B2), Safe(B2, P1)))), #ForAll([B2], Not(Unsafe(B2, B1, P1)))), effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)), Not(Moved()))), # Action(name='place', parameters=[B1, P1, Q1], # condition=And(Holding(B1), AtConf(Q1), IsPose(B1, P1), Kin(P1, Q1), # #ForAll([B2], Or(Equal(B1, B2), # # Exists([P2], And(AtPose(B2, P2), CFree(P1, P2)))))), # ForAll([B2], Or(Equal(B1, B2), # I think this compiles to the forward axioms that achieve things... # Exists([P2], And(AtPose(B2, P2), IsPose(B2, P2), Not(Collision(P1, P2))))))), # #ForAll([B2], Or(Equal(B1, B2), # # Not(Exists([P2], And(AtPose(B2, P2), Not(CFree(P1, P2)))))))), # #ForAll([B2], Or(Equal(B1, B2), # Generates a ton of axioms... # # Not(Exists([P2], And(AtPose(B2, P2), IsPose(B2, P2), Collision(P1, P2))))))), # effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)), Not(Moved()))), #Action(name='place', parameters=[B1, P1, Q1], # condition=And(Holding(B1), AtConf(Q1), IsPose(B1, P1), Kin(P1, Q1), Not(Unsafe(P1))), # effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)), Not(Moved()))), #Action(name='move', parameters=[Q1, Q2], # condition=And(AtConf(Q1), Not(Moved())), # effect=And(AtConf(Q2), Moved(), Not(AtConf(Q1)))), # TODO: a lot of the slowdown is because of the large number of move axioms # Inferred Safe #Translator operators: 1843 #Translator axioms: 3281 #Search Time: 10.98 # Explicit Safe #Translator operators: 1843 #Translator axioms: 3281 #Search Time: 9.926 ] # TODO: translate_strips_axiom in translate.py # TODO: maybe this is bad because of shared poses... # 15*15*15*15 = 50625 # Takeaways: using the implicit collision is good because it results in fewer facts # The negated axiom does better than the normal axiom by a little bit for some reason... axioms = [ # For some reason, the unsafe version of this is much better than the safe version in terms of making axioms? # Even with one collision recorded, it makes a ton of axioms #Axiom(effect=Safe(B2, P1), # condition=Or(Holding(B2), Exists([P2], And(AtPose(B2, P2), IsPose(B2, P2), Not(Collision(P1, P2)))))), #Axiom(effect=Unsafe(B2, B1, P1), # condition=And(Not(Equal(B1, B2)), # # Exists([P2], And(AtPose(B2, P2), Not(CFree(P1, P2)))))), # Exists([P2], And(AtPose(B2, P2), Collision(P1, P2))))), #Axiom(effect=Unsafe(B2, B1, P1), # condition=Exists([P2], And(AtPose(B2, P2), Not(CFree(P1, P2))))), # TODO: I think the inverting is implicitly doing the same thing I do where I don't bother making an axiom if always true Axiom(effect=Unsafe(B2, P1), condition=Exists([P2], And(AtPose(B2, P2), IsPose(B2, P2), Collision(P1, P2)))), # Don't even need IsPose? # This is the best config. I think it is able to work well because it can prune the number of instances when inverting # It starts to take up a little time when there are many possible placements for things though # TODO: the difference is that it first instantiates axioms and then inverts! #Axiom(effect=Unsafe(B2, P1), # condition=Exists([P2], And(AtPose(B2, P2), IsPose(B2, P2), Not(CFree(P1, P2))))) # This doesn't result in too many axioms but takes a while to instantiate... #Axiom(effect=Unsafe(P1), # Need to include the not equal thing # condition=Exists([B2, P2], And(AtPose(B2, P2), IsPose(B2, P2), Collision(P1, P2)))), # TODO: Can turn off options.filter_unreachable_facts ] #################### # Conditional stream declarations cond_streams = [ #GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[], # generator=lambda: ((p,) for p in xrange(n, num_poses))), GeneratorStream( inputs=[B1], outputs=[P1], conditions=[], effects=[IsPose(B1, P1)], #generator=lambda b: ((p,) for p in xrange(n, num_poses))), generator=lambda b: iter([(n + blocks.index(b), )]) ), # Unique placements GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[Kin(P1, Q1)], generator=lambda p: [(p, )]), # Inverse kinematics #TestStream(inputs=[P1, P2], conditions=[], effects=[CFree(P1, P2)], # test=lambda p1, p2: p1 != p2, eager=True), # #test = lambda p1, p2: True, eager = True), TestStream(inputs=[P1, P2], conditions=[], effects=[Collision(P1, P2)], test=lambda p1, p2: p1 == p2, eager=False, sign=False), ] #################### constants = [ CONF(initial_config) # Any additional objects ] initial_atoms = [ AtConf(initial_config), HandEmpty(), ] + [AtPose(block, pose) for block, pose in initial_poses.items()] + [ IsPose(block, pose) for block, pose in (initial_poses.items() + goal_poses.items()) ] goal_literals = [ AtPose(block, pose) for block, pose in goal_poses.iteritems() ] problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def compile_problem(tamp_problem): """ Constructs a STRIPStream problem for the continuous TMP problem. :param tamp_problem: a :class:`.TMPProblem` :return: a :class:`.STRIPStreamProblem` """ B1, B2 = Param(BLOCK), Param(BLOCK) P1, P2 = Param(POSE), Param(POSE) Q1, Q2 = Param(CONF), Param(CONF) R = Param(REGION) actions = [ Action(name='pick', parameters=[B1, P1, Q1], condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), LegalKin(P1, Q1)), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))), Action(name='place', parameters=[B1, P1, Q1], condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1), ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))), effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))), Action(name='move', parameters=[Q1, Q2], condition=AtConf(Q1), effect=And(AtConf(Q2), Not(AtConf(Q1)))), Action(name='clean', parameters=[B1, R], condition=And(InRegion(B1, R), IsSink(R)), effect=And(Cleaned(B1))), Action(name='cook', parameters=[B1, R], condition=And(InRegion(B1, R), IsStove(R)), effect=And(Cooked(B1))), ] axioms = [ Axiom(effect=InRegion(B1, R), condition=Exists([P1], And(AtPose(B1, P1), Contained(B1, P1, R)))), Axiom(effect=Safe(B2, B1, P1), condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), ] cond_streams = [ EasyGenStream(inputs=[R, B1], outputs=[P1], conditions=[CanPlace(B1, R)], effects=[Contained(B1, P1, R)], generator=lambda r, b: (sample_region_pose(r, b) for _ in irange(0, INF))), EasyGenStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[LegalKin(P1, Q1)], generator=lambda p: iter([inverse_kinematics(p)])), EasyTestStream(inputs=[R, B1, P1], conditions=[], effects=[Contained(B1, P1, R)], test=in_region, eager=EAGER_TESTS, plannable=False), EasyTestStream(inputs=[B1, P1, B2, P2], conditions=[], effects=[CollisionFree(B1, P1, B2, P2)], test=lambda *args: not are_colliding(*args), eager=EAGER_TESTS), ] constants = [ REGION(tamp_problem.env_region), ] initial_atoms = [ AtConf(tamp_problem.initial_config), ] + [ AtPose(block, pose) for block, pose in tamp_problem.initial_poses.iteritems() ] + [ CanPlace(block, tamp_problem.env_region) for block in tamp_problem.initial_poses ] if tamp_problem.initial_holding is None: initial_atoms.append(HandEmpty()) else: initial_atoms.append(Holding(tamp_problem.initial_holding)) goal_literals = [] if tamp_problem.goal_config is not None: goal_literals.append(AtConf(tamp_problem.goal_config)) if tamp_problem.goal_holding is False: goal_literals.append(HandEmpty()) elif tamp_problem.goal_holding is not None: goal_literals.append(Holding(tamp_problem.goal_holding)) for block, goal in tamp_problem.goal_poses: goal_literals.append(AtPose(block, goal)) for block, goal in tamp_problem.goal_regions: initial_atoms.append(CanPlace(block, goal)) goal_literals.append(InRegion(block, goal)) return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)
def compile_problem(tamp_problem): """ Constructs a STRIPStream problem for the countable TMP problem. :param tamp_problem: a :class:`.TMPProblem` :return: a :class:`.STRIPStreamProblem` """ # NOTE - the simple focused algorithm gives "Could not find instantiation for PNE!" when this is moved outside B1, B2 = Param(BLOCK), Param(BLOCK) P1, P2 = Param(POSE), Param(POSE) Q1, Q2 = Param(CONF), Param(CONF) actions = [ Action(name='pick', parameters=[B1, P1, Q1], condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), LegalKin(P1, Q1)), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))), Action( name='place', parameters=[B1, P1, Q1], condition=And( Holding(B1), AtConf(Q1), LegalKin(P1, Q1), #ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))), ForAll([B2], Or(Equal(B1, B2), Safe(B2, P1)))), #*[Or(Equal(B1, BLOCK(b2)), Safe(b2, P1)) for b2 in tamp_problem.initial_poses]), effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))), Action(name='move', parameters=[Q1, Q2], condition=AtConf(Q1), effect=And(AtConf(Q2), Not(AtConf(Q1)))), ] axioms = [ #Axiom(effect=Safe(B2, B1, P1), condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), Axiom(effect=Safe(B2, P1), condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(P1, P2)))), ] # NOTE - this needs to be inside the method so you make new streams each time cond_streams = [ #EasyGenStream(inputs=[P2], outputs=[P1], conditions=[], effects=[], # generator=lambda a: irange(0, NUM_POSES)), EasyGenStream(inputs=[], outputs=[P1], conditions=[], effects=[], generator=lambda: irange(0, NUM_POSES)), EasyGenStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[LegalKin(P1, Q1)], generator=lambda p: iter([p])), #EasyTestStream(inputs=[B1, P1, B2, P2], conditions=[], effects=[CollisionFree(B1, P1, B2, P2)], # test=lambda b1, p1, b2, p2: p1 != p2, eager=EAGER_TESTS), EasyTestStream(inputs=[P1, P2], conditions=[], effects=[CollisionFree(P1, P2)], test=lambda p1, p2: p1 != p2, eager=EAGER_TESTS), ] constants = [] initial_atoms = [ AtConf(tamp_problem.initial_config), ] + [ AtPose(block, pose) for block, pose in tamp_problem.initial_poses.iteritems() ] if tamp_problem.initial_holding is False: initial_atoms.append(HandEmpty()) else: initial_atoms.append(Holding(tamp_problem.initial_holding, BLOCK)) goal_literals = [] if tamp_problem.goal_holding is False: goal_literals.append(HandEmpty()) elif tamp_problem.goal_holding is not None: goal_literals.append(Holding(tamp_problem.goal_holding)) for block, goal in tamp_problem.goal_poses.iteritems(): goal_literals.append(AtPose(block, goal)) return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)
def compile_belief(belief, goal): locations, _, _ = maximum_likelihood_obs(belief) constants = map(OBJ, belief.objLoc.keys()) + map(POSE, belief.occupancies.keys()) initial_atoms = [] #initial_atoms += [At(obj, p) for obj, p in locations.iteritems()] initial_atoms += [ BAt(obj, p, round(belief.objLocDist(obj).prob(p), 3)) for obj, p in locations.iteritems() ] # NOTE - using the maximum belief here goal_literals = [] for fluent in goal.fluents: if isinstance(fluent, Bd): literal, arg, prob = fluent.args if isinstance(literal, ObjLoc): goal_literals.append( BAtAbove(literal.args[0], literal.value, prob)) elif isinstance(literal, ObjState) and arg == 'clean': goal_literals.append(BClean(literal.args[0], prob)) else: raise NotImplementedError(literal) else: raise NotImplementedError(fluent) O, P, B = Param(OBJ), Param(POSE), Param(BELIEF) B1, B2 = Param(BELIEF), Param(BELIEF) p_obs_t = 1 - glob.failProbs['Look'] p_obs_f = 1 - p_obs_t #cost = prob_cost(p_obs_t) # This isn't informative #cost = prob_cost(float(prior.name)*p_obs_t) # TODO - need to automatically derive the costs actions = [ #PerfectLook(), Look(p_obs_t), #BackwardLook(p_obs_t), Transport(), ] axioms = [ Axiom(BAtAbove(O, P, B2), Exists([B1], And(BAt(O, P, B1), Above(B1, B2)))), #Axiom(IsPossible(B1, B2), Exists([B], And(IsUpdate(B, B2), Above(B1, B)))), # NOTE - this only uses static facts ] cond_streams = [ GeneratorStream(inputs=[B1], outputs=[B2], conditions=[], effects=[IsUpdate(B1, B2)], generator=lambda b1: [round(forward_belief(b1, p_obs_t, p_obs_f), 3)]), #GeneratorStream(inputs=[B2], outputs=[B1], conditions=[], effects=[IsUpdate(B1, B2)], # generator=lambda b2: [round(inverse_belief(b2, p_obs_t, p_obs_f), 3)]), # NOTE - I previously used a Deferred Literal to produce the initial belief #TestStream(inputs=[O, P, B1], conditions=[], effects=[BAt(O, P, B1)], # test=lambda o, p, b: belief.objLocDist(o).prob(p) >= b, eager=True), TestStream(inputs=[B1, B2], conditions=[], effects=[Above(B1, B2)], test=lambda b1, b2: b1 >= b2, eager=True), #TestStream(inputs=[B1, B2, B], conditions=[IsUpdate(B, B2), Above(B1, B)], effects=[IsPossible(B1, B2)], # test=lambda *args: True, eager=True), ] return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)
def compile_problem(estimator, task): # Data types CONF = Type() SURFACE = Type() # Difference between fixed and movable objects ITEM = Type() POSE = Type() CLASS = Type() # Fluent predicates AtConf = Pred(CONF) HandEmpty = Pred() Holding = Pred(ITEM) AtPose = Pred(ITEM, POSE) Supported = Pred(POSE, SURFACE) # Fluent Localized = Pred(OBJECT) Measured = Pred(OBJECT) # Static predicates IsKin = Pred(POSE, CONF) IsClass = Pred(OBJECT, CLASS) IsVisible = Pred(SURFACE, CONF) IsSupported = Pred(POSE, SURFACE) # Static # Functions ScanRoom = Func(SURFACE) #ScanTable = Func(SURFACE, TYPE) ScanTable = Func( SURFACE, ITEM) # TODO: could include more specific vantage point costs Distance = Func(CONF, CONF) # Derived On = Pred(ITEM, SURFACE) ComputableP = Pred(POSE) ComputableQ = Pred(CONF) # Free parameters Q1, Q2 = Param(CONF), Param(CONF) S1 = Param(SURFACE) B1, B2 = Param(ITEM), Param(ITEM) P1, P2 = Param(POSE), Param(POSE) rename_easy(locals()) # Trick to make debugging easier # TODO: could just do easier version of this that doesn't require localized to start actions = [ Action( name='pick', parameters=[B1, P1, Q1], # TODO: Visibility constraint condition=And(Localized(B1), AtPose(B1, P1), HandEmpty(), AtConf(Q1), IsKin(P1, Q1)), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))), Action(name='place', parameters=[B1, P1, Q1], condition=And(Holding(B1), AtConf(Q1), IsKin(P1, Q1)), effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))), Action(name='move', parameters=[Q1, Q2], condition=And(AtConf(Q1), ComputableQ(Q2)), effect=And(AtConf(Q2), Not(AtConf(Q1)), Cost(Distance(Q1, Q2)))), Action(name='scan_room', parameters=[S1], condition=Not(Localized(S1)), effect=And(Localized(S1), Cost(ScanRoom(S1)))), # TODO: need to set later poses to be usable or not to constrain order Action(name='scan_table', parameters=[S1, B1, P1, Q1], condition=And(Localized(S1), AtConf(Q1), IsVisible(S1, Q1), Not(Localized(B1))), effect=And(Localized(B1), Measured(P1), Supported(P1, S1), Cost(ScanTable(S1, B1)))), ] axioms = [ # TODO: axiom for on? Might need a stream that generates initial fluents for On # TODO: axiom that says that all fake values depending on a certain one now are usable # TODO: could use stream predicates as fluents (as long as it doesn't break anything...) Axiom(effect=On(B1, S1), condition=Exists([P1], And(AtPose(B1, P1), Or(IsSupported(P1, S1), Supported(P1, S1))))), # TODO: compile automatically Axiom(effect=ComputableQ(Q1), condition=Or(Measured(Q1), Exists([P1], And(IsKin(P1, Q1), ComputableP(P1))), Exists([S1], And(IsVisible(S1, Q1), Localized(S1))))), Axiom(effect=ComputableP(P1), condition=Or( Measured(P1), Exists([S1], And(IsSupported(P1, S1), Localized(S1))))), ] ##### surface_types = estimator.surface_octomaps.keys() item_types = estimator.object_octomaps.keys() names_from_type = defaultdict(list) known_poses = {} holding = None def add_type(cl): name = '{}{}'.format(cl, len(names_from_type[cl])) names_from_type[cl].append(name) return name # TODO: this is all very similar to the generic open world stuff if estimator.holding is not None: holding = add_type(estimator.holding) for cl, octomap in estimator.surface_octomaps.items( ): # TODO: generic surface object for pose in octomap.get_occupied(): known_poses[add_type(cl)] = pose for cl, octomap in estimator.object_octomaps.items(): for pose in octomap.get_occupied(): known_poses[add_type(cl)] = pose print dict(names_from_type), known_poses # Human tells you to move block -> at least one block # At least one block -> at least one surface # TODO: generate fake properties about these fake values? goal_objects, goal_surfaces = entities_from_task(task) for cl in surface_types: add_type(cl) #for cl in goal_surfaces: # for i in xrange(len(names_from_type[cl]), goal_surfaces[cl]): # add_type(cl) #for cl in item_types: for cl in goal_objects: for i in xrange(len(names_from_type[cl]), goal_objects[cl]): add_type(cl) ##### initial_atoms = [ AtConf(estimator.robot_conf), Measured(CONF(estimator.robot_conf)) ] if holding is None: initial_atoms.append(HandEmpty()) else: initial_atoms.append(Holding(holding)) class_from_name = { name: ty for ty in names_from_type for name in names_from_type[ty] } for name, ty in class_from_name.iteritems(): ENTITY = SURFACE if ty in surface_types else ITEM initial_atoms.append(IsClass(ENTITY(name), ty)) if name in known_poses: initial_atoms.append(Localized(ENTITY(name))) if ENTITY == ITEM: pose = known_poses[name] initial_atoms += [AtPose(name, pose), Measured(POSE(pose))] else: if ENTITY == ITEM: pose = 'p_init_{}'.format( name ) # The object should always be at this pose (we just can't do anything about it yet) initial_atoms += [AtPose(name, pose)] goal_literals = [] if task.holding is None: goal_literals.append(HandEmpty()) elif task.holding is not False: goal_literals.append( Exists([B1], And(Holding(B1), IsClass(B1, task.holding)))) for obj, surface in task.object_surfaces: goal_literals.append( Exists([B1, S1], And(On(B1, S1), IsClass(B1, obj), IsClass(S1, surface)))) goal_formula = And(*goal_literals) #################### TOLERANCE = 0.1 def is_visible(table, conf): x, y = conf pose = known_poses[table] #return (pose == x) and (y == 2) #return (pose == x) and (y == 2) return (pose == x) and (abs(y - 2) < TOLERANCE) def is_kinematic(pose, conf): x, y = conf #return (pose == x) and (y == 1) return (pose == x) and (abs(y - 1) < TOLERANCE) #################### def sample_visible(table): # TODO: could generically do this with poses if table in known_poses: y = 2 #y += round(uniform(-TOLERANCE, TOLERANCE), 3) conf = (known_poses[table], y) assert is_visible(table, conf) else: conf = 'q_vis_{}'.format(table) yield (conf, ) def inverse_kinematics(pose): # TODO: list stream that uses ending info # TODO: only do if localized as well? # TODO: is it helpful to have this even if the raw value is kind of wrong (to steer the search) if type(pose) != str: y = 1 #y += round(uniform(-TOLERANCE, TOLERANCE), 3) conf = (pose, y) assert is_kinematic(pose, conf) else: conf = 'q_ik_{}'.format(pose) yield (conf, ) def sample_table(table): if table in known_poses: pose = known_poses[table] else: pose = 'p_{}'.format(table) yield (pose, ) #################### MAX_DISTANCE = 10 # TODO: maybe I don't need to worry about normalizing. I can just pretend non-parametric again for planning def scan_surface_cost( surface, obj): # TODO: what about multiple scans of the belief? fail_cost = 100 surface_cl = class_from_name[surface] obj_cl = class_from_name[obj] prob = 1.0 if obj_cl in estimator.object_prior: prob *= estimator.object_prior[obj_cl].get(surface_cl, 0) if surface in known_poses: prob *= estimator.object_octomaps[obj_cl].get_prob( known_poses[surface]) else: prob *= 0.1 # Low chance if you don't even know the table exists # TODO: could even include the probability the table exists #return expected_cost(1, fail_cost, prob) return mdp_cost(1, fail_cost, prob) def scan_room_cost(surface): # TODO: try to prove some sort of bound on the cost to recover will suffice? fail_cost = 100 cl = class_from_name[surface] occupied_poses = { known_poses[n] for n in names_from_type[cl] if n in known_poses } p_failure = 1.0 for pose in estimator.poses: if pose not in occupied_poses: p_failure *= (1 - estimator.surface_octomaps[cl].get_prob(pose)) return 1 * (1 - p_failure) + fail_cost * p_failure def distance_cost(q1, q2): if str in (type(q1), type(q2)): return MAX_DISTANCE # TODO: take the max possible pose distance # TODO: can use the info encoded within these to obtain better bounds return np.linalg.norm(np.array(q2) - np.array(q1)) #################### # TODO: could add measured as the output to these streams = [ GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[IsKin(P1, Q1)], generator=inverse_kinematics), GeneratorStream(inputs=[S1], outputs=[Q1], conditions=[], effects=[IsVisible(S1, Q1)], generator=sample_visible), GeneratorStream(inputs=[S1], outputs=[P1], conditions=[], effects=[IsSupported(P1, S1)], generator=sample_table), CostStream(inputs=[S1, B1], conditions=[], effects=[ScanTable(S1, B1)], function=scan_surface_cost), CostStream(inputs=[Q1, Q2], conditions=[], effects=[Distance(Q1, Q2), Distance(Q2, Q1)], function=distance_cost), CostStream(inputs=[S1], conditions=[], effects=[ScanRoom(S1)], function=scan_room_cost), # TODO: make an is original precondition and only apply these to original values? # I suppose I could apply to all concrete things but that's likely not useful #TestStream(inputs=[S1, Q1], conditions=[IsOriginal(Q1)], effects=[IsVisible(S1, Q1)], # test=is_visible, eager=True), #TestStream(inputs=[P1, Q1], conditions=[IsOriginal(Q1), IsOriginal(Q1)], effects=[IsKin(P1, Q1)], # test=is_kinematic, eager=True), #GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[IsVisible(P1, Q1)], # generator=sample_visible), ] problem = STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, streams, []) def command_from_action((action, args)): if action.name == 'scan_room': return simulate_scan, [] if action.name in ('scan_table', 'look_block'): return simulate_look, [] if action.name == 'move': q1, q2 = map(get_value, args) return simulate_move, [q2] if action.name == 'pick': o, p, q = map(get_value, args) return simulate_pick, [class_from_name[o]] if action.name == 'place': return simulate_place, [] raise ValueError(action.name) return problem, command_from_action
def create_problem(): """ Creates the 1D task and motion planning STRIPStream problem. :return: a :class:`.STRIPStreamProblem` """ blocks = ['block%i' % i for i in range(3)] num_poses = pow(10, 10) initial_config = 0 # the initial robot configuration is 0 initial_poses = {block: i for i, block in enumerate( blocks)} # the initial pose for block i is i # the goal pose for block i is i+1 goal_poses = {block: i + 1 for i, block in enumerate(blocks)} #################### # Data types CONF, BLOCK, POSE = Type(), Type(), Type() # Fluent predicates AtConf = Pred(CONF) AtPose = Pred(BLOCK, POSE) HandEmpty = Pred() Holding = Pred(BLOCK) # Derived predicates Safe = Pred(BLOCK, BLOCK, POSE) # Static predicates LegalKin = Pred(POSE, CONF) CollisionFree = Pred(BLOCK, POSE, BLOCK, POSE) # Free parameters B1, B2 = Param(BLOCK), Param(BLOCK) P1, P2 = Param(POSE), Param(POSE) Q1, Q2 = Param(CONF), Param(CONF) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ Action(name='pick', parameters=[B1, P1, Q1], condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), LegalKin(P1, Q1)), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))), Action(name='place', parameters=[B1, P1, Q1], condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1), ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))), # TODO - convert to finite blocks case? effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))), Action(name='move', parameters=[Q1, Q2], condition=AtConf(Q1), effect=And(AtConf(Q2), Not(AtConf(Q1)))), ] axioms = [ Axiom(effect=Safe(B2, B1, P1), condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), # Infers B2 is at a safe pose wrt B1 at P1 ] #################### # Conditional stream declarations cond_streams = [ GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[], generator=lambda: ((p,) for p in xrange(num_poses))), # Enumerating all the poses GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[LegalKin(P1, Q1)], generator=lambda p: [(p,)]), # Inverse kinematics TestStream(inputs=[B1, P1, B2, P2], conditions=[], effects=[CollisionFree(B1, P1, B2, P2)], test=lambda b1, p1, b2, p2: p1 != p2, eager=True), # Collision checking ] #################### constants = [ CONF(initial_config) # Any additional objects ] initial_atoms = [ AtConf(initial_config), HandEmpty() ] + [ AtPose(block, pose) for block, pose in initial_poses.iteritems() ] goal_literals = [AtPose(block, pose) for block, pose in goal_poses.iteritems()] problem = STRIPStreamProblem( initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def create_problem(initRobotPos = (0.5, 0.5), initRobotVar = 0.01, maxMoveDist = 5.0, beaconPos = (1, 1), homePos = (0, 0), goalPosEps = 0.1, goalVar = 0.1, odoErrorRate = 0.1, obsVarPerDistFromSensor = 10.0, minObsVar = 0.001, domainSize = 20, verboseFns = False): """ :return: a :class:`.STRIPStreamProblem` """ # Data types POS = Type() # 2D position VAR = Type() # 2D variance BEACON = Type() # 2D position # Fluent predicates RobotPos = Pred(POS) RobotVar = Pred(VAR) # Derived predicates KnowYouAreHome = Pred() # Static predicates Odometry = Pred(POS, VAR, POS, VAR) Sensor = Pred(POS, VAR, BEACON, VAR) LegalPosVar = Pred(POS, VAR) NearbyPos = Pred(POS, POS) NearGoalPos = Pred(POS) NearGoalVar = Pred(VAR) # Free parameters RPOS1, RPOS2 = Param(POS), Param(POS) RVAR1, RVAR2 = Param(VAR), Param(VAR) BPOS = Param(BEACON) rename_easy(locals()) # Helper functions def distance(p1, p2): return math.sqrt(sum([(a - b)**2 for (a,b) in zip(p1, p2)])) def odoVarFun(rp1, rv, rp2): d = distance(rp1, rp2) odoVar = (d * odoErrorRate)**2 result = rv + odoVar if verboseFns: print 'ovf:', rv, d, result return [result] def sensorVarFun(rp, rv, bp): d = distance(rp, bp) obsVar = max(d / obsVarPerDistFromSensor, minObsVar) #result = round(1.0 / ((1.0 / rv) + (1.0 / obsVar)), 5) # Causes zero variance which is bad result = 1.0 / ((1.0 / rv) + (1.0 / obsVar)) if verboseFns: print 'svf:', rv, d, result return [result] def randPos(): while True: result = (random.random() * domainSize, random.random() * domainSize) print 'rp:', result yield [result] def legalTest(rp): (x, y) = rp result = (0 <= x <= domainSize) and (0 <= y <= domainSize) if not result: print 'not legal:', rp return result # TODO - combine variance and positions actions = [ Action(name='Move', parameters=[RPOS1, RVAR1, RPOS2, RVAR2], condition = And(RobotPos(RPOS1), RobotVar(RVAR1), Odometry(RPOS1, RVAR1, RPOS2, RVAR2)), effect = And(RobotPos(RPOS2), RobotVar(RVAR2), Not(RobotPos(RPOS1)), Not(RobotVar(RVAR1)))), Action(name='Look', parameters=[RPOS1, RVAR1, BPOS, RVAR2], condition = And(RobotPos(RPOS1), RobotVar(RVAR1), Sensor(RPOS1, RVAR1, BPOS, RVAR2)), effect = And(RobotVar(RVAR2), Not(RobotVar(RVAR1)))) ] axioms = [ ] # Conditional stream declarations cond_streams = [ GeneratorStream(inputs = [], outputs = [RPOS1], conditions = [], effects = [], generator = randPos), # TODO - the number of variances grows incredibly but we just want to consider variances possible with the move # Each var only has one pos because moving changes GeneratorStream(inputs = [RPOS1, RVAR1, RPOS2], outputs = [RVAR2], conditions = [LegalPosVar(RPOS1, RVAR1), NearbyPos(RPOS1, RPOS2)], effects = [Odometry(RPOS1, RVAR1, RPOS2, RVAR2), LegalPosVar(RPOS2, RVAR2)], generator = odoVarFun), GeneratorStream(inputs = [RPOS1, RVAR1, BPOS], outputs = [RVAR2], conditions = [LegalPosVar(RPOS1, RVAR1)], effects = [Sensor(RPOS1, RVAR1, BPOS, RVAR2), LegalPosVar(RPOS1, RVAR2)], generator = sensorVarFun), TestStream(inputs = [RPOS1, RPOS2], conditions = [], effects = [NearbyPos(RPOS1, RPOS2)], test = lambda rp1, rp2: distance(rp1, rp2) < maxMoveDist, eager = True), TestStream(inputs = [RPOS1], conditions = [], effects = [NearGoalPos(RPOS1)], test = lambda rp1: distance(rp1, homePos) < goalPosEps, eager = True), TestStream(inputs = [RVAR1], conditions = [], effects = [NearGoalVar(RVAR1)], test = lambda a: a < goalVar, eager = True) # NOTE - the problem seems to be the fast that this is eager ] #################### constants = [ BEACON(beaconPos), #POS((.1, .1)), #POS((3., .1)), #POS((6., .1)), POS(homePos), ] initial_atoms = [ RobotPos(initRobotPos), RobotVar(initRobotVar), LegalPosVar(initRobotPos, initRobotVar), # TODO - I might as well keep track of pairs. Make this a legal on both ] goal_formula = Exists([RPOS1, RVAR1], And(RobotPos(RPOS1), RobotVar(RVAR1), LegalPosVar(RPOS1, RVAR1), NearGoalPos(RPOS1), NearGoalVar(RVAR1))) problem = STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, cond_streams, constants) return problem
def compile_problem(tamp_problem): O = Param(OBJECT) O1, O2 = Param(OBJECT), Param(OBJECT) L = Param(LOCATION) L_s, L_g = Param(LOCATION), Param(LOCATION) # generic location Stove_l_s, Stove_l_g = Param(STOVE_L_S), Param( STOVE_L_G) # locations for stove and sink Sink_l_s, Sink_l_g = Param(SINK_L_S), Param(SINK_L_G) actions = [ Action(name='wash', parameters=[O], condition=And(InSink(O)), effect=And(Clean(O))), Action(name='cook', parameters=[O], condition=And(InStove(O), Clean(O)), effect=And(Cooked(O))), Action(name='pickplace', parameters=[O, L_s, L_g], condition=And(EmptySweptVolume(O, L_s, L_g), AtPose(O, L_s)), effect=And(AtPose(O, L_g), Not(AtPose(O, L_s)))) # You should delete! ] axioms = [ # For all objects in the world, either object is O1 or if not, then it is not in the region Axiom(effect=EmptySweptVolume(O,L_s,L_g),condition=ForAll([O2],\ Or(Equal(O,O2),\ Exists([L],(And(AtPose(O2,L),OutsideRegion(O,O2,L,L_s,L_g))))))), Axiom(effect=InStove(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsStove(L_s,L_g)))), Axiom(effect=InSink(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsSink(L_s,L_g)))), ] cond_streams = [ EasyGenStream(inputs=[O,L_s,L_g], outputs=[L], conditions=[IsSmaller(L_s,L_g)], effects=[Contained(O,L,L_s,L_g)],\ generator=lambda b, ls, lg: (sample_region_pose(b, ls, lg ) for _ in irange(0, INF))), EasyTestStream(inputs=[L_s,L_g],conditions=[],effects=[IsSmaller(L_s,L_g)],test=is_smaller,eager=EAGER_TESTS), EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsSink(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS), EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsStove(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS), EasyTestStream(inputs=[O,O2,L,L_s,L_g],conditions=[],effects=[OutsideRegion(O,O2,L,L_s,L_g)],test=not_in_region,eager=EAGER_TESTS), # OutsideRegion tests if the block at L is outside of the region (Ls,Lg) ] #################### # instantiate the environment region? constants = [ STOVE_L_S(tamp_problem.stove_region_s), STOVE_L_G(tamp_problem.stove_region_g), SINK_L_S(tamp_problem.sink_region_s), SINK_L_G(tamp_problem.sink_region_g), ] # define initial state using initial poses of objects initial_atoms = [ AtPose(block, pose) for block, pose in tamp_problem.initial_poses.iteritems() ] + [IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g)] + [ IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g) ] # static predicate but on steroid # define goal state as target object to be cooked - can you infer that target object is on Stove goal_literals = [] # goal_literals.append( AtPose(tamp_problem.blue_obj,1) ) #NOTE: This works; so planner knows how to clear the area # goal_literals.append( AtPose(tamp_problem.target_obj,3.0) ) #NOTE: But doing this does not work goal_literals.append(Cooked(tamp_problem.target_obj)) return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants), static_pred_names
def create_problem(p_init=0, v_init=0, a_init=0, dt=.5, max_a=10, min_a=-10, p_goal=10): """ Creates a 1D car STRIPStream problem. https://github.com/KCL-Planning/SMTPlan/blob/master/benchmarks/car_nodrag/car_domain_nodrag.pddl :return: a :class:`.STRIPStreamProblem` """ # Data types STATE, ACCEL, TIME = Type(), Type(), Type() # Fluent predicates AtState = Pred(STATE) AtAccel = Pred(ACCEL) NewTime = Pred() # Fluent predicates Running = Pred() Stopped = Pred() EngineBlown = Pred() TransmissionFine = Pred() GoalReached = Pred() # Static predicates Delta1 = Pred(ACCEL, ACCEL) # A2 - A1 = 1 Dynamics = Pred(STATE, ACCEL, STATE) Contained = Pred(STATE) # Free parameters A1, A2 = Param(ACCEL), Param(ACCEL) S1 = Param(STATE) S2 = Param(STATE) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ Action(name='accelerate', parameters=[A1, A2], condition=And(Running(), NewTime(), AtAccel(A1), Delta1(A1, A2)), effect=And(AtAccel(A2), Not(NewTime()), Not(AtAccel(A1)))), Action(name='decelerate', parameters=[A1, A2], condition=And(Running(), NewTime(), AtAccel(A1), Delta1(A2, A1)), effect=And(AtAccel(A2), Not(NewTime()), Not(AtAccel(A1)))), Action(name='simulate', parameters=[S1, A1, S2], condition=And(AtState(S1), AtAccel(A1), Dynamics(S1, A1, S2)), effect=And(NewTime(), AtState(S2), Not(AtState(S1)))), ] axioms = [ Axiom(effect=GoalReached(), condition=Exists([S1], And(AtState(S1), Contained(S1)))), ] #################### # Conditional stream declarations cond_streams = [ FunctionStream(inputs=[S1, A1], outputs=[S2], conditions=[], effects=[Dynamics(S1, A1, S2)], function=lambda (p1, v1), a1: (p1 + v1 * dt + .5 * a1 * dt**2, v1 + a1 * dt)), GeneratorStream(inputs=[A1], outputs=[A2], conditions=[], effects=[Delta1(A1, A2)], generator=lambda a1: [a1 + 1] if a1 + 1 <= max_a else []), GeneratorStream(inputs=[A2], outputs=[A1], conditions=[], effects=[Delta1(A2, A1)], generator=lambda a2: [a2 + 1] if a2 - 1 > -min_a else []), TestStream(inputs=[S1], conditions=[], effects=[Contained(S1)], test=lambda (p1, v1): p1 > p_goal, eager=True), ] #################### constants = [] initial_atoms = [ AtState((p_init, v_init)), AtAccel(a_init), NewTime(), Running(), ] goal_literals = [ GoalReached() #AtAccel(0), ] problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def create_problem(): """ Creates the 1D task and motion planning STRIPStream problem. This models the same problem as :module:`.run_tutorial` but does so without using any streams. :return: a :class:`.STRIPStreamProblem` """ num_blocks = 3 blocks = ['block%i'%i for i in range(num_blocks)] num_poses = num_blocks+1 initial_config = 0 # the initial robot configuration is 0 initial_poses = {block: i for i, block in enumerate(blocks)} # the initial pose for block i is i goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1 #################### # Data types CONF, BLOCK, POSE = Type(), Type(), Type() # Fluent predicates AtConf = Pred(CONF) AtPose = Pred(BLOCK, POSE) HandEmpty = Pred() Holding = Pred(BLOCK) # Derived predicates Safe = Pred(BLOCK, BLOCK, POSE) # Static predicates LegalKin = Pred(POSE, CONF) CollisionFree = Pred(BLOCK, POSE, BLOCK, POSE) # Free parameters B1, B2 = Param(BLOCK), Param(BLOCK) P1, P2 = Param(POSE), Param(POSE) Q1, Q2 = Param(CONF), Param(CONF) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ Action(name='pick', parameters=[B1, P1, Q1], condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), LegalKin(P1, Q1)), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))), Action(name='place', parameters=[B1, P1, Q1], condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1), ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))), # TODO - convert to finite blocks case? effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))), Action(name='move', parameters=[Q1, Q2], condition=AtConf(Q1), effect=And(AtConf(Q2), Not(AtConf(Q1)))), ] axioms = [ Axiom(effect=Safe(B2, B1, P1), condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), # Infers B2 is at a safe pose wrt B1 at P1 ] #################### cond_streams = [] constants = [] initial_atoms = [ AtConf(initial_config), HandEmpty() ] + [ AtPose(block, pose) for block, pose in initial_poses.iteritems() ] + [ LegalKin(i, i) for i in range(num_poses) ] + [ CollisionFree(b1, p1, b2, p2) for b1, p1, b2, p2 in product(blocks, range(num_poses), blocks, range(num_poses)) if p1 != p2 and b1 != b2 ] goal_literals = [AtPose(block, pose) for block, pose in goal_poses.iteritems()] problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
BAt = Predicate(OBJ, BELIEF) BAtAbove = Predicate(OBJ, LOC, PROB) # TODO - should OBJ go in here? BSatisfies = Predicate(BELIEF, LOC, PROB) IsLookUpdate = Predicate(BELIEF, LOC, BELIEF) IsMoveUpdate = Predicate(LOC, BELIEF, LOC, BELIEF) #IsBelief = Predicate(OBJ, BELIEF) LookCost = Function('look_cost', [BELIEF, LOC]) MoveCost = Function('move_cost', [LOC, BELIEF]) InferAtCost = Function('infer_at_cost', [OBJ, LOC]) ########## O = Param(OBJ) B, B2 = Param(BELIEF), Param(BELIEF) L, L2 = Param(LOC), Param(LOC) P = Param(PROB) rename_easy(locals()) ################################################## class LookUpdate( CondStream ): # NOTE - this is pretty bad because there are so many combinations of locations def __init__(self): super(LookUpdate, self).__init__( [B, L],
def create_problem(goal, obstacles=(), distance=.25, digits=3): """ Creates a Probabilistic Roadmap (PRM) motion planning problem. :return: a :class:`.STRIPStreamProblem` """ # Data types POINT = Type() REGION = Type() # Fluent predicates AtPoint = Pred(POINT) # Derived predicates InRegion = Pred(REGION) # Stream predicates AreNearby = Pred(POINT, POINT) IsEdge = Pred(POINT, POINT) Contained = Pred(POINT, REGION) # Functions Distance = Func(POINT, POINT) # Free parameters P1, P2 = Param(POINT), Param(POINT) R = Param(REGION) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ #STRIPSAction(name='move', parameters=[P1, P2], # conditions=[AtPoint(P1), IsEdge(P1, P2)], # effects=[AtPoint(P2), Not(AtPoint(P1))], cost=1), # Fixed cost #STRIPSAction(name='move', parameters=[P1, P2], # conditions=[AtPoint(P1), IsEdge(P1, P2)], # effects=[AtPoint(P2), Not(AtPoint(P1)), Cost(Distance(P1, P2))]), # Cost depends on parameters Action(name='move', parameters=[P1, P2], condition=And(AtPoint(P1), IsEdge(P1, P2)), effect=And(AtPoint(P2), Not(AtPoint(P1))), costs=[1, Distance(P1, P2)]), ] axioms = [ #Axiom(effect=GoalReached(), condition=Exists([P1], And(AtPos(P1), Contained(P1)))), STRIPSAxiom(conditions=[AtPoint(P1), Contained(P1, R)], effects=[InRegion(R)]) ] #################### # Conditional stream declarations cond_streams = [ GeneratorStream( inputs=[], outputs=[P1], conditions=[], effects=[], generator=lambda: ((sample(digits), ) for _ in inf_sequence()) ), # NOTE - version that only generators collision-free points GeneratorStream(inputs=[R], outputs=[P1], conditions=[], effects=[Contained(P1, R)], generator=lambda r: ((sample_box(r), ) for _ in inf_sequence())), #TestStream(inputs=[P1, P2], conditions=[], effects=[AreNearby(P1, P2), AreNearby(P2, P1)], # test=lambda p1, p2: get_distance(p1, p2) <= distance, eager=True), #TestStream(inputs=[P1, P2], conditions=[AreNearby(P1, P2)], effects=[IsEdge(P1, P2), IsEdge(P2, P1)], # test=lambda p1, p2: is_collision_free((p1, p2), obstacles), eager=True), TestStream( inputs=[P1, P2], conditions=[], effects=[IsEdge(P1, P2), IsEdge(P2, P1)], #test=lambda p1, p2: is_collision_free((p1, p2), obstacles), eager=True), test=lambda p1, p2: (get_distance(p1, p2) <= distance) and is_collision_free( (p1, p2), obstacles), eager=True), #TestStream(inputs=[P1, P2], conditions=[], effects=[IsEdge(P1, P2), IsEdge(P2, P1)], # test=lambda p1, p2: get_distance(p1, p2) <= distance and is_collision_free((p1, p2), obstacles), eager=True), #TestStream(inputs=[P1, R], conditions=[], effects=[Contained(P1, R)], # test=lambda p, r: contains(p, r), eager=True), CostStream(inputs=[P1, P2], conditions=[], effects=[Distance(P1, P2), Distance(P2, P1)], function=get_distance, scale=100, eager=True), ] #################### constants = [] initial_atoms = [ AtPoint((0, 0)), ] goal_literals = [] if is_region(goal): goal_literals.append(InRegion(goal)) else: goal_literals.append(AtPoint(goal)) problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
IsDryer = Predicate(LOC) IsPainter = Predicate(LOC) IsWasher = Predicate(LOC) UnsureLoc = Predicate(OBJ) # NOTE - can also just make these objects UnsureState = Predicate(OBJ) UnsureClear = Predicate(LOC) NotAtLoc = Predicate(OBJ, LOC) FindCost = Function('find_cost', [OBJ, LOC]) InspectLocCost = Function('inspect_loc_cost', [LOC]) InspectStateCost = Function('inspect_state_cost', [OBJ, STATE]) O, L1, L2, S = Param(OBJ), Param(LOC), Param(LOC), Param(STATE) rename_easy(locals()) #UNKNOWN_LOC = 'unknown' # NOTE - I could validate safe by inspecting all objects or just the goal location # TODO - could do costs by either specifying them upfront or using STRIPStream actions = [ Action(name='find', parameters=[O, L1], # Policy to find the object or an inspection? #condition=And(At(O, UNKNOWN_LOC)), #effect=And(At(O, L1), Not(At(O, UNKNOWN_LOC)))), condition=And(UnsureLoc(O), Not(NotAtLoc(O, L1))), effect=And(At(O, L1), Not(Clear(L1)), Not(UnsureLoc(O)), Cost(FindCost(O, L1)))), # TODO - can even adjust the cost of these to bias search towards more likely
def create_problem(goal, obstacles=(), distance=.25, digits=3): """ Creates a Probabilistic Roadmap (PRM) motion planning problem. :return: a :class:`.STRIPStreamProblem` """ # Data types POINT = Type() REGION = Type() # Fluent predicates AtPoint = Pred(POINT) # Derived predicates InRegion = Pred(REGION) #IsReachable = Pred(POINT, POINT) IsReachable = Pred(POINT) # Stream predicates IsEdge = Pred(POINT, POINT) Contained = Pred(POINT, REGION) # Free parameters P1, P2 = Param(POINT), Param(POINT) R = Param(REGION) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ Action(name='move', parameters=[P1, P2], condition=And(AtPoint(P1), IsReachable(P2)), effect=And(AtPoint(P2), Not(AtPoint(P1)))) ] axioms = [ Axiom(effect=InRegion(R), condition=Exists([P1], And(AtPoint(P1), Contained(P1, R)))), Axiom(effect=IsReachable(P2), condition=Or(AtPoint(P2), Exists([P1], And(IsReachable(P1), IsEdge(P1, P2))))), ] #################### def sampler(): for _ in inf_sequence(): yield [(sample(digits), ) for _ in range(10)] roadmap = set() def test(p1, p2): if not (get_distance(p1, p2) <= distance and is_collision_free( (p1, p2), obstacles)): return False roadmap.add((p1, p2)) return True #################### # Conditional stream declarations cond_streams = [ EasyListGenStream( inputs=[], outputs=[P1], conditions=[], effects=[], generator=sampler ), # NOTE - version that only generators collision-free points GeneratorStream(inputs=[R], outputs=[P1], conditions=[], effects=[Contained(P1, R)], generator=lambda r: (sample_box(r) for _ in inf_sequence())), TestStream(inputs=[P1, P2], conditions=[], effects=[IsEdge(P1, P2), IsEdge(P2, P1)], test=test, eager=True), ] #################### constants = [] initial_atoms = [ AtPoint((0, 0)), ] goal_literals = [] if is_region(goal): goal_literals.append(InRegion(goal)) else: goal_literals.append(AtPoint(goal)) problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem, roadmap
def create_problem(p_init=0, v_init=0, a_init=0, dt=.5, max_a=10, min_a=-10, p_goal=10): """ Creates a 1D car STRIPStream problem. https://github.com/KCL-Planning/SMTPlan/blob/master/benchmarks/car_nodrag/car_domain_nodrag.pddl :return: a :class:`.STRIPStreamProblem` """ # Data types POS, VEL, ACCEL, TIME = Type(), Type(), Type(), Type() # Fluent predicates AtPos = Pred(POS) AtVel = Pred(VEL) AtAccel = Pred(ACCEL) NewTime = Pred() # Fluent predicates Running = Pred() Stopped = Pred() EngineBlown = Pred() TransmissionFine = Pred() GoalReached = Pred() # Static predicates Delta1 = Pred(ACCEL, ACCEL) # A2 - A1 = 1 Dynamics = Pred(POS, VEL, ACCEL, POS, VEL) Contained = Pred(POS) # Free parameters A1, A2 = Param(ACCEL), Param(ACCEL) P1, V1 = Param(POS), Param(VEL) P2, V2 = Param(POS), Param(VEL) rename_easy(locals()) # Trick to make debugging easier #################### actions = [ #Action(name='accelerate', parameters=[A1, A2], # #condition=And(Running(), NewTime(), AtAccel(A1), Delta1(A1, A2)), # condition=And(NewTime(), AtAccel(A1), Delta1(A1, A2)), # effect=And(AtAccel(A2), Not(NewTime()), Not(AtAccel(A1))), cost=5), STRIPSAction(name='accelerate', parameters=[A1, A2], conditions=[NewTime(), AtAccel(A1), Delta1(A1, A2)], effects=[AtAccel(A2), Not(NewTime()), Not(AtAccel(A1))], cost=5), #Action(name='decelerate', parameters=[A1, A2], # condition=And(Running(), NewTime(), AtAccel(A1), Delta1(A2, A1)), # condition=And(NewTime(), AtAccel(A1), Delta1(A2, A1)), # effect=And(AtAccel(A2), Not(NewTime()), Not(AtAccel(A1)))), STRIPSAction(name='decelerate', parameters=[A1, A2], conditions=[NewTime(), AtAccel(A1), Delta1(A2, A1)], effects=[AtAccel(A2), Not(NewTime()), Not(AtAccel(A1))]), #Action(name='simulate', parameters=[P1, V1, A1, P2, V2], # condition=And(AtPos(P1), AtVel(V1), AtAccel(A1), Dynamics(P1, V1, A1, P2, V2)), # effect=And(NewTime(), AtPos(P2), AtVel(V2), Not(AtPos(P1)), Not(AtVel(V1))), cost=1), STRIPSAction(name='simulate', parameters=[P1, V1, A1, P2, V2], conditions=[AtPos(P1), AtVel(V1), AtAccel(A1), Dynamics(P1, V1, A1, P2, V2)], effects=[NewTime(), AtPos(P2), AtVel(V2), Not(AtPos(P1)), Not(AtVel(V1))], cost=1), #STRIPSAction(name='goal', parameters=[P1], # conditions=[AtPos(P1), Contained(P1)], # effects=[GoalReached()], cost=None), ] axioms = [ #Axiom(effect=GoalReached(), condition=Exists([P1], And(AtPos(P1), Contained(P1)))), STRIPSAxiom(conditions=[AtPos(P1), Contained(P1)], effects=[GoalReached()]) ] #################### # Conditional stream declarations cond_streams = [ FunctionStream(inputs=[P1, V1, A1], outputs=[P2, V2], conditions=[], effects=[Dynamics(P1, V1, A1, P2, V2)], function=lambda p1, v1, a1: (p1 + v1*dt + .5*a1*dt**2, v1 + a1*dt)), FunctionStream(inputs=[A1], outputs=[A2], conditions=[], effects=[Delta1(A1, A2)], function=lambda a1: (a1+1,) if a1+1 <= max_a else None), #GeneratorStream(inputs=[A1], outputs=[A2], conditions=[], effects=[Delta1(A1, A2)], # generator=lambda a1: [a1+1] if a1+1 <= max_a else []), FunctionStream(inputs=[A2], outputs=[A1], conditions=[], effects=[Delta1(A2, A1)], function=lambda a2: (a2+1,) if a2-1 >= min_a else None), #GeneratorStream(inputs=[A2], outputs=[A1], conditions=[], effects=[Delta1(A2, A1)], # generator=lambda a2: [a2+1] if a2-1 >- min_a else []), TestStream(inputs=[P1], conditions=[], effects=[Contained(P1)], test=lambda p1: p1 >= p_goal, eager=True), ] #################### constants = [] initial_atoms = [ AtPos(p_init), AtVel(v_init), AtAccel(a_init), NewTime(), #Running(), ] goal_literals = [ GoalReached(), AtAccel(0), ] problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants) return problem
def compile_problem(tamp_problem): """ Constructs a STRIPStream problem for the countable TMP problem. :param tamp_problem: a :class:`.TMPProblem` :return: a :class:`.STRIPStreamProblem` """ B1, B2 = Param(BLOCK), Param(BLOCK) P1, P2 = Param(POSE), Param(POSE) Q1, Q2 = Param(CONF), Param(CONF) actions = [ Action(name='pick', parameters=[B1, P1, Q1], condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), LegalKin(P1, Q1)), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))), Action(name='place', parameters=[B1, P1, Q1], condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1), ForAll([B2], Or(Equal(B1, B2), Safe(B2, P1)))), effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))), Action(name='move', parameters=[Q1, Q2], condition=AtConf(Q1), effect=And(AtConf(Q2), Not(AtConf(Q1)))), ] axioms = [ Axiom(effect=Safe(B2, P1), condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(P1, P2)))), ] cond_streams = [ EasyGenStream(inputs=[], outputs=[P1], conditions=[], effects=[], generator=lambda: irange(0, NUM_POSES)), EasyGenStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[LegalKin(P1, Q1)], generator=lambda p: iter([p])), EasyTestStream(inputs=[P1, P2], conditions=[], effects=[CollisionFree(P1, P2)], test=lambda p1, p2: p1 != p2, eager=EAGER_TESTS), ] constants = [] initial_atoms = [ AtConf(tamp_problem.initial_config), ] + [ AtPose(block, pose) for block, pose in tamp_problem.initial_poses.iteritems() ] if tamp_problem.initial_holding is False: initial_atoms.append(HandEmpty()) else: initial_atoms.append(Holding(tamp_problem.initial_holding, BLOCK)) goal_literals = [] if tamp_problem.goal_holding is False: goal_literals.append(HandEmpty()) elif tamp_problem.goal_holding is not None: goal_literals.append(Holding(tamp_problem.goal_holding)) for block, goal in tamp_problem.goal_poses.iteritems(): goal_literals.append(AtPose(block, goal)) return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)
def create_problem(n=50): """ Creates the 1D task and motion planning STRIPStream problem. :return: a :class:`.STRIPStreamProblem` """ blocks = ['block%i' % i for i in xrange(n)] num_poses = pow(10, 10) initial_config = 0 # the initial robot configuration is 0 initial_poses = {block: i for i, block in enumerate(blocks) } # the initial pose for block i is i goal_poses = {blocks[1]: 2} # the goal pose for block i is i+1 #################### # TODO: the last version of this would be to make a separate pose type per object (I think I did do this) CONF = Type() HandEmpty = Pred() AtConf = Pred(CONF) Q1, Q2 = Param(CONF), Param(CONF) #POSE = Type() #Kin = Pred(POSE, CONF) #Collision = Pred(POSE, POSE) #P1, P2 = Param(POSE), Param(POSE) #rename_easy(locals()) # Trick to make debugging easier actions = [ Action(name='move', parameters=[Q1, Q2], condition=AtConf(Q1), effect=And(AtConf(Q2), Not(AtConf(Q1)))), ] axioms = [] cond_streams = [ #GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[Kin(P1, Q1)], # generator=lambda p: [(p,)]), # Inverse kinematics #TestStream(inputs=[P1, P2], conditions=[], effects=[Collision(P1, P2)], # test=lambda p1, p2: p1 == p2, eager=True), ] initial_atoms = [ AtConf(initial_config), HandEmpty(), ] goal_literals = [] #################### # TODO: I think thinking invariants gets harder with many predicates. Can cap this time I believe though #153 initial candidates #Finding invariants: [2.250s CPU, 2.263s wall - clock] for b in blocks: # TODO: can toggle using individual pose types POSE = Type() Kin = Pred(POSE, CONF) P1 = Param(POSE) AtPose = Pred(POSE) IsPose = Pred(POSE) Holding = Pred() #Unsafe = Pred(BLOCK, POSE) initial_atoms += [ AtPose(initial_poses[b]), IsPose(initial_poses[b]), ] if b in goal_poses: goal_literals += [AtPose(goal_poses[b])] initial_atoms += [IsPose(goal_poses[b])] axioms += [ # TODO: to do this, need to make b a parameter and set it using inequality #Axiom(effect=Unsafe(b, P1), # condition=Exists([P2], And(AtPose(b, P2), IsPose(b, P2), Collision(P1, P2)))), ] actions += [ Action(name='pick-{}'.format(b), parameters=[P1, Q1], condition=And(AtPose(P1), HandEmpty(), AtConf(Q1), IsPose(P1), Kin(P1, Q1)), effect=And(Holding(), Not(AtPose(P1)), Not(HandEmpty()))), Action( name='place-{}'.format(b), parameters=[P1, Q1], condition=And(Holding(), AtConf(Q1), IsPose(P1), Kin(P1, Q1)), #*[Safe(b2, P1) for b2 in blocks if b2 != b]), #*[Not(Unsafe(b2, P1)) for b2 in blocks if b2 != b]), effect=And(AtPose(P1), HandEmpty(), Not(Holding()))), ] cond_streams += [ GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[IsPose(P1)], generator=lambda: ((p, ) for p in xrange(n, num_poses))), GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[Kin(P1, Q1)], generator=lambda p: [(p, )]), # Inverse kinematics ] problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, []) return problem