Example #1
0
def plot_one(rates, plotname, *p, frac=0.05, age=13.6):
    brates = u.gimme_rebinned_data(rates,
                                   splits=arange(0, 1.167, 0.167).tolist())
    scale_k = quad(imf.salpeter, 3, 8)[0] / quad(imf.salpeter1, 0.1, 125)[0]
    scale = scale_k * 0.7**2. * 1e4  ## factors of h...
    dt = 0.05
    tt = arange(0.0, age, dt)
    lbt = age - tt
    zz = [ct.cosmoz(x, ho=70) for x in lbt]

    par_model = [0.013, 2.6, 3.2, 6.1]
    sfh = rz.csfh_time(tt, *par_model)
    dtd = rz.dtdfunc(tt, *p)

    tmp = convolve(
        sfh, dtd,
        'full') * dt * frac * scale  ## now convolved result in forward time
    rate_fn = tmp[:len(dtd)]
    clf()
    ax = subplot(111)
    ax2 = ax.twinx()
    ax2.plot(zz, sfh, 'r-')
    ax.plot(zz, rate_fn, 'k-')

    ax.errorbar(rates[:, 0],
                rates[:, 1],
                yerr=[rates[:, 3], rates[:, 2]],
                fmt='o',
                color='0.6')
    ax.errorbar(brates[:, 0],
                brates[:, 1],
                yerr=[brates[:, 3], brates[:, 2]],
                xerr=[brates[:, 5], brates[:, 4]],
                fmt='o',
                color='0.0',
                zorder=10)

    pwrl = (-1.0, 1.0)
    ax.set_xlim(0, 2.5)
    ax.set_ylim(0, 1.8)
    ax2.set_ylim(0, 0.16)
    ax3 = axes([0.65, 0.6, 0.23, 0.2])
    ax3.plot(tt, dtd, 'b-',
             label='Fit')  #label='Norm = %1.1f' %(simps(dtd,x=time)))
    ax3.plot(tt, rz.powerdtd(tt, *pwrl), 'b:', label=r'$t^{%.1f}$' % (pwrl[0]))
    ax3.set_ylabel('$\Phi$')
    ax3.set_xlabel('Delay Time (Gyr)')
    ax3.set_xlim(0, 12)
    ax3.set_ylim(0, 1.3)
    ax3.legend(frameon=False)

    ax.set_xlabel('Redshift')
    ax.set_ylabel(r'$10^{-4}$ SNe Ia per year per Mpc$^3$')
    ax2.set_ylabel(r'M$_{\odot}$ per year per Mpc$^3$')
    ax.set_title(r'$k=%.4f\,M_{\odot}^{-1},\,\,f=%2.1f\%%$' %
                 (scale_k, frac * 100))

    savefig(plotname)
    return ()
Example #2
0
def run_model(tt, *p):
    ddt = average(diff(tt))
    sfh = rz.csfh_time(tt, *csfh_model)
    dtd = rz.dtdfunc(tt, *p[1:])
    tmp = convolve(sfh, dtd, 'full') * ddt * np.exp(
        p[0])  #*frac*scale ## now convolved result in forward time
    rate_fn = tmp[:len(dtd)]
    return (rate_fn)
Example #3
0
def run_model(tt, *p):
    ddt = average(diff(tt))
    sfh = rz.csfh_time(tt, *csfh_model)
    dtd = rz.dtdfunc(tt, *p[1:])
    tmp = convolve(sfh, dtd, 'full')*ddt*p[0]#*frac*scale ## now convolved result in forward time
    rate_fn=tmp[:len(dtd)]
    ## print(p,sum(rate_fn))
    ## if sum(rate_fn)==0.:
    ##     pdb.set_trace()
    return(rate_fn)
Example #4
0
def dtdfit(time, *p):
    ff, aa, bb, cc = p
    scale = quad(imf.salpeter, 3, 8)[0] / quad(imf.salpeter1, 0.1, 125)[0]
    scale = scale * 0.7**2. * 1e4
    par_model = [0.0134, 2.55, 3.3, 6.1]
    sfh = rz.csfh_time(time, *par_model)
    dt = sum(diff(time)) / (len(time) - 1)
    p1 = (aa, bb, cc)
    res = rz.dtdfunc(time, *p1, norm=True)
    tmp = convolve(sfh, res, 'full')
    return (ff * tmp[:len(time)] * dt * scale)
Example #5
0
def dtdfit(time, *p):
    ff, m, w, k = p
    scale = quad(imf.salpeter, 3, 8)[0] / quad(imf.salpeter1, 0.1, 125)[0]
    scale = scale * 0.7**2. * 1e4

    par_model = [0.0134, 2.55, 3.3, 6.1]  ## Compendium
    ## par_model = [0.013, 2.6, 3.2, 6.1] ## MD14
    ## par_model = [0.009, 2.7, 2.5, 4.1] ## Driver18

    sfh = rz.csfh_time(time, *par_model)
    dt = sum(diff(time)) / (len(time) - 1)
    p1 = (m, w, k)
    res = rz.dtdfunc(time, *p1, norm=True)
    tmp = convolve(sfh, res, 'full')
    return (np.exp(ff) * tmp[:len(time)] * dt * scale)
Example #6
0
                color='0.0',
                zorder=10)

    ysample = asarray([run_model(tta, *pi[:-1]) for pi in draws]) * scale

    ax.plot(zz, run_model(tta, *p_val) * scale, 'b-', label='Fit')
    lower = percentile(ysample, 15.9, axis=0)
    upper = percentile(ysample, 84.1, axis=0)
    ax.fill_between(zz, upper, lower, color='green', alpha=0.2)
    lower = percentile(ysample, 2.5, axis=0)
    upper = percentile(ysample, 97.5, axis=0)
    ax.fill_between(zz, upper, lower, color='green', alpha=0.2)

    pwrl = (-1.0, 1.0)
    dud = rz.powerdtd(tta, *pwrl)
    jdud = convolve(rz.csfh_time(tta, *csfh_model), dud, 'full') * average(
        diff(tta)) * frac * scale
    jdud = jdud[:len(dud)]
    ax.plot(zz, jdud, 'b:', label=r'$t^{%.1f}$' % (pwrl[0]))
    ## pdb.set_trace()

    ax.set_xlim(0, 2.5)
    ax.set_ylim(0, 1.8)
    ax2.set_xlim(0, 12)
    ax2.set_ylim(-3, 0.5)

    ax.set_xlabel('Redshift')
    ax.set_ylabel(r'$10^{-4}$ SNe Ia per year per Mpc$^3$')
    ax2.set_ylabel('$\log(\Phi)$')
    ax2.set_xlabel('Delay Time (Gyr)')
    ax.set_title(r'$k=%.4f\,M_{\odot}^{-1},\,\,\varepsilon=%2.1f\%%$' %
Example #7
0
    idx = where(ysample[:,2]>0.)
    ysample = ysample[idx]
        

    ax.plot(zz, run_model(tta, *p_val)*scale, 'b-')
    lower = percentile(ysample, 15.9, axis=0)
    upper = percentile(ysample, 84.1, axis=0)
    ax.fill_between(zz, upper, lower, color='green', alpha=0.2)
    lower = percentile(ysample, 2.5, axis=0)
    upper = percentile(ysample, 97.5, axis=0)
    ax.fill_between(zz, upper, lower, color='green', alpha=0.2)


    pwrl = (-1.0,1.0)
    dud = rz.powerdtd(tta, *pwrl)
    jdud = convolve(rz.csfh_time(tta, *csfh_model), dud, 'full')*average(diff(tta))*frac*scale
    jdud = jdud[:len(dud)]
    ax.plot(zz, jdud, 'b:')
    ## pdb.set_trace()

    ax.set_xlim(0,2.5)

    ax.set_xlabel('Redshift')
    ax.set_ylabel(r'$10^{-4}$ SNe Ia per year per Mpc$^3$')
    ax2.set_ylabel('$\Phi$')
    ax2.set_xlabel('Delay Time (Gyr)')
    ax.set_title(r'$k=%.4f\,M_{\odot}^{-1},\,\,\varepsilon=%2.1f\%%$' %(scale_k, p_val[0]*100))
    savefig('figure_fit_demo_werr.png', transparent=True)