def analyseSentencesInParagraphs(unmatched_paragraphs_curr, unmatched_paragraphs_prev, revision_curr): # Containers for unmatched and matched sentences. unmatched_sentences_curr = [] unmatched_sentences_prev = [] matched_sentences_prev = [] total_sentences = 0 # Iterate over the unmatched paragraphs of the current revision. for paragraph_curr in unmatched_paragraphs_curr: # Split the current paragraph into sentences. sentences = Text.splitIntoSentences(paragraph_curr.value) # Iterate over the sentences of the current paragraph for sentence in sentences: # Create the Sentence structure. sentence = sentence.strip() sentence = ' '.join(Text.splitIntoWords(sentence)) hash_curr = Text.calculateHash(sentence) matched_curr = False total_sentences = total_sentences + 1 # Iterate over the unmatched paragraphs from the previous revision. for paragraph_prev in unmatched_paragraphs_prev: if (hash_curr in paragraph_prev.sentences.keys()): for sentence_prev in paragraph_prev.sentences[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not(matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) else: paragraph_curr.sentences.update({sentence_prev.hash_value : [sentence_prev]}) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) if (matched_curr): break # Iterate over the hash table of sentences from old revisions. if ((not matched_curr) and (hash_curr in sentences_ht.keys())): for sentence_prev in sentences_ht[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not(matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) else: paragraph_curr.sentences.update({sentence_prev.hash_value : [sentence_prev]}) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) # If the sentence did not match, then include in the container of unmatched sentences for further analysis. if (not matched_curr): sentence_curr = Sentence() sentence_curr.value = sentence sentence_curr.hash_value = hash_curr paragraph_curr.ordered_sentences.append(sentence_curr.hash_value) if (sentence_curr.hash_value in paragraph_curr.sentences.keys()): paragraph_curr.sentences[sentence_curr.hash_value].append(sentence_curr) else: paragraph_curr.sentences.update({sentence_curr.hash_value : [sentence_curr]}) unmatched_sentences_curr.append(sentence_curr) # Identify the unmatched sentences in the previous paragraph revision. for paragraph_prev in unmatched_paragraphs_prev: for sentence_prev_hash in paragraph_prev.ordered_sentences: for sentence_prev in paragraph_prev.sentences[sentence_prev_hash]: if (not sentence_prev.matched): unmatched_sentences_prev.append(sentence_prev) sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) return (unmatched_sentences_curr, unmatched_sentences_prev, matched_sentences_prev, total_sentences)
def analyseSentencesInParagraphs(unmatched_paragraphs_curr, unmatched_paragraphs_prev, revision_curr, revision_prev, relation): # Containers for unmatched and matched sentences. unmatched_sentences_curr = [] unmatched_sentences_prev = [] matched_sentences_prev = [] total_sentences = 0 # Iterate over the unmatched paragraphs of the current revision. for paragraph_curr in unmatched_paragraphs_curr: # Split the current paragraph into sentences. sentences = Text.splitIntoSentences(paragraph_curr.value) # Iterate over the sentences of the current paragraph for sentence in sentences: # Create the Sentence structure. sentence = sentence.strip() sentence = ' '.join(Text.splitIntoWords(sentence)) hash_curr = Text.calculateHash(sentence) matched_curr = False total_sentences = total_sentences + 1 # Iterate over the unmatched paragraphs from the previous revision. for paragraph_prev in unmatched_paragraphs_prev: if (hash_curr in paragraph_prev.sentences.keys()): for sentence_prev in paragraph_prev.sentences[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not(matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append(revision_curr.wikipedia_id) #if (word_prev.revision in relation.reintroduced.keys()): # relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) #else: # relation.reintroduced.update({word_prev.revision : 1 }) # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) else: paragraph_curr.sentences.update({sentence_prev.hash_value : [sentence_prev]}) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) if (matched_curr): break # Iterate over the hash table of sentences from old revisions. if ((not matched_curr) and (hash_curr in sentences_ht.keys())): for sentence_prev in sentences_ht[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not(matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append(revision_curr.wikipedia_id) if (revision_prev.wikipedia_id not in word_prev.used): word_prev.freq.append(revision_curr.wikipedia_id) # Revert: reintroducing something that somebody else deleted if (revision_prev.wikipedia_id not in word_prev.used): for elem in word_prev.deleted: #if (revision_curr.wikipedia_id == 11): # print "Revert in 11", word_prev.value, word_prev.deleted, relation.revert if (elem in revisions.keys()): if (revisions[elem].contributor_name != revision_curr.contributor_name): if (elem in relation.revert.keys()): relation.revert.update({elem : relation.revert[elem] + 1}) else: relation.revert.update({elem : 1}) else: if (elem in relation.self_revert.keys()): relation.self_revert.update({elem : relation.self_revert[elem] + 1}) else: relation.self_revert.update({elem : 1}) #print "relation.revert", word_prev.value, word_prev.deleted, relation.revert, revision_curr.wikipedia_id if (revision_prev.wikipedia_id not in word_prev.used): if (elem in revisions.keys()): if (revisions[word_prev.revision].contributor_name != revision_curr.contributor_name): if (word_prev.revision in relation.reintroduced.keys()): relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) else: relation.reintroduced.update({word_prev.revision : 1 }) else: if (word_prev.revision in relation.self_reintroduced.keys()): relation.self_reintroduced.update({word_prev.revision : relation.self_reintroduced[word_prev.revision] + 1}) else: relation.self_reintroduced.update({word_prev.revision : 1}) # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) else: paragraph_curr.sentences.update({sentence_prev.hash_value : [sentence_prev]}) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) # If the sentence did not match, then include in the container of unmatched sentences for further analysis. if (not matched_curr): sentence_curr = Sentence() sentence_curr.value = sentence sentence_curr.hash_value = hash_curr paragraph_curr.ordered_sentences.append(sentence_curr.hash_value) if (sentence_curr.hash_value in paragraph_curr.sentences.keys()): paragraph_curr.sentences[sentence_curr.hash_value].append(sentence_curr) else: paragraph_curr.sentences.update({sentence_curr.hash_value : [sentence_curr]}) unmatched_sentences_curr.append(sentence_curr) # Identify the unmatched sentences in the previous paragraph revision. for paragraph_prev in unmatched_paragraphs_prev: for sentence_prev_hash in paragraph_prev.ordered_sentences: for sentence_prev in paragraph_prev.sentences[sentence_prev_hash]: if (not sentence_prev.matched): unmatched_sentences_prev.append(sentence_prev) sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) return (unmatched_sentences_curr, unmatched_sentences_prev, matched_sentences_prev, total_sentences)
def analyseSentencesInParagraphs(unmatched_paragraphs_curr, unmatched_paragraphs_prev, revision_curr, revision_prev, relation): # Containers for unmatched and matched sentences. unmatched_sentences_curr = [] unmatched_sentences_prev = [] matched_sentences_prev = [] total_sentences = 0 # Iterate over the unmatched paragraphs of the current revision. for paragraph_curr in unmatched_paragraphs_curr: # Split the current paragraph into sentences. sentences = Text.splitIntoSentences(paragraph_curr.value) # Iterate over the sentences of the current paragraph for sentence in sentences: # Create the Sentence structure. sentence = sentence.strip() sentence = ' '.join(Text.splitIntoWords(sentence)) hash_curr = Text.calculateHash(sentence) matched_curr = False total_sentences = total_sentences + 1 # Iterate over the unmatched paragraphs from the previous revision. for paragraph_prev in unmatched_paragraphs_prev: if (hash_curr in paragraph_prev.sentences.keys()): for sentence_prev in paragraph_prev.sentences[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not (matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append( revision_curr.wikipedia_id) #if (word_prev.revision in relation.reintroduced.keys()): # relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) #else: # relation.reintroduced.update({word_prev.revision : 1 }) # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append( sentence_prev) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) else: paragraph_curr.sentences.update({ sentence_prev.hash_value: [sentence_prev] }) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) if (matched_curr): break # Iterate over the hash table of sentences from old revisions. if ((not matched_curr) and (hash_curr in sentences_ht.keys())): for sentence_prev in sentences_ht[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not (matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append( revision_curr.wikipedia_id) if (revision_prev.wikipedia_id not in word_prev.used): word_prev.freq.append( revision_curr.wikipedia_id) # Revert: reintroducing something that somebody else deleted if (revision_prev.wikipedia_id not in word_prev.used): for elem in word_prev.deleted: #if (revision_curr.wikipedia_id == 11): # print "Revert in 11", word_prev.value, word_prev.deleted, relation.revert if (elem in revisions.keys()): if (revisions[elem]. contributor_name != revision_curr. contributor_name): if (elem in relation.revert. keys()): relation.revert.update({ elem: relation.revert[elem] + 1 }) else: relation.revert.update( {elem: 1}) else: if (elem in relation. self_revert.keys()): relation.self_revert.update( { elem: relation. self_revert[elem] + 1 }) else: relation.self_revert.update( {elem: 1}) #print "relation.revert", word_prev.value, word_prev.deleted, relation.revert, revision_curr.wikipedia_id if (revision_prev.wikipedia_id not in word_prev.used): if (elem in revisions.keys()): if (revisions[word_prev.revision]. contributor_name != revision_curr.contributor_name ): if (word_prev.revision in relation. reintroduced.keys()): relation.reintroduced.update({ word_prev.revision: relation.reintroduced[ word_prev.revision] + 1 }) else: relation.reintroduced.update( {word_prev.revision: 1}) else: if (word_prev.revision in relation. self_reintroduced.keys()): relation.self_reintroduced.update( { word_prev.revision: relation. self_reintroduced[ word_prev.revision] + 1 }) else: relation.self_reintroduced.update( {word_prev.revision: 1}) # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append( sentence_prev) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) else: paragraph_curr.sentences.update({ sentence_prev.hash_value: [sentence_prev] }) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) # If the sentence did not match, then include in the container of unmatched sentences for further analysis. if (not matched_curr): sentence_curr = Sentence() sentence_curr.value = sentence sentence_curr.hash_value = hash_curr paragraph_curr.ordered_sentences.append( sentence_curr.hash_value) if (sentence_curr.hash_value in paragraph_curr.sentences.keys()): paragraph_curr.sentences[sentence_curr.hash_value].append( sentence_curr) else: paragraph_curr.sentences.update( {sentence_curr.hash_value: [sentence_curr]}) unmatched_sentences_curr.append(sentence_curr) # Identify the unmatched sentences in the previous paragraph revision. for paragraph_prev in unmatched_paragraphs_prev: for sentence_prev_hash in paragraph_prev.ordered_sentences: for sentence_prev in paragraph_prev.sentences[sentence_prev_hash]: if (not sentence_prev.matched): unmatched_sentences_prev.append(sentence_prev) sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) return (unmatched_sentences_curr, unmatched_sentences_prev, matched_sentences_prev, total_sentences)
def analyseSentencesInParagraphs(unmatched_paragraphs_curr, unmatched_paragraphs_prev, revision_curr): # Containers for unmatched and matched sentences. unmatched_sentences_curr = [] unmatched_sentences_prev = [] matched_sentences_prev = [] total_sentences = 0 # Iterate over the unmatched paragraphs of the current revision. for paragraph_curr in unmatched_paragraphs_curr: # Split the current paragraph into sentences. sentences = Text.splitIntoSentences(paragraph_curr.value) # Iterate over the sentences of the current paragraph for sentence in sentences: # Create the Sentence structure. sentence = sentence.strip() sentence = ' '.join(Text.splitIntoWords(sentence)) hash_curr = Text.calculateHash(sentence) matched_curr = False total_sentences = total_sentences + 1 # Iterate over the unmatched paragraphs from the previous revision. for paragraph_prev in unmatched_paragraphs_prev: if (hash_curr in paragraph_prev.sentences.keys()): for sentence_prev in paragraph_prev.sentences[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not (matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append( sentence_prev) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) else: paragraph_curr.sentences.update({ sentence_prev.hash_value: [sentence_prev] }) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) if (matched_curr): break # Iterate over the hash table of sentences from old revisions. if ((not matched_curr) and (hash_curr in sentences_ht.keys())): for sentence_prev in sentences_ht[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not (matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append( sentence_prev) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) else: paragraph_curr.sentences.update({ sentence_prev.hash_value: [sentence_prev] }) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) # If the sentence did not match, then include in the container of unmatched sentences for further analysis. if (not matched_curr): sentence_curr = Sentence() sentence_curr.value = sentence sentence_curr.hash_value = hash_curr paragraph_curr.ordered_sentences.append( sentence_curr.hash_value) if (sentence_curr.hash_value in paragraph_curr.sentences.keys()): paragraph_curr.sentences[sentence_curr.hash_value].append( sentence_curr) else: paragraph_curr.sentences.update( {sentence_curr.hash_value: [sentence_curr]}) unmatched_sentences_curr.append(sentence_curr) # Identify the unmatched sentences in the previous paragraph revision. for paragraph_prev in unmatched_paragraphs_prev: for sentence_prev_hash in paragraph_prev.ordered_sentences: for sentence_prev in paragraph_prev.sentences[sentence_prev_hash]: if (not sentence_prev.matched): unmatched_sentences_prev.append(sentence_prev) sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) return (unmatched_sentences_curr, unmatched_sentences_prev, matched_sentences_prev, total_sentences)